Abstract
Physical unclonable functions (PUFs) are innovative primitives to extract secret keys from the unique submicron structure of integrated circuits. PUFs avoid storing the secret key in the nonvolatile memory directly, providing interesting advantages such as physical unclonability and tamper resistance. In general, Error-Correcting Codes (ECC) are used to ensure the reliability of the response bits. However, the ECC techniques have significant power, delay overheads and are subject to information leakage. In this paper, we introduce a PUF-based key generator for NAND Flash memory chips, while requiring no extra custom hardware circuits. First, we present three methods to extract raw PUF output numbers from NAND Flash memory chips, namely partial erasure, partial programming and program disturbance, which are all based on the NAND Flash Physical Unclonable Function (NFPUF). Second, we use a bit-map or a position-map to select the cells with the most reliable relationship of the size between raw NFPUF output numbers. Only the selected cells are used for key generation. Finally, we describe the practical implementations with multiple off-the-shelf NAND Flash memory chips, and evaluate the reliability and security of the proposed key generator. Experimental results show that our NFPUF based key generator can generate a cryptographically secure 128-bit key with a failure rate \(<10^{-6}\) in 93.83 ms.
This work was partially supported by the National 973 Program of China under award No. 2013CB338001 and the Strategic Priority Research Program of Chinese Academy of Sciences under Grant XDA06010702.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bhargava, M., Mai, K.: An efficient reliable PUF-based cryptographic key generator in 65 nm CMOS. In: Proceedings of the Conference on Design, p. 70. European Design and Automation Association, Automation and Test in Europe (2014)
Bösch, C., Guajardo, J., Sadeghi, A.-R., Shokrollahi, J., Tuyls, P.: Efficient helper data key extractor on FPGAs. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 181–197. Springer, Heidelberg (2008)
Breeuwsma, M., De Jongh, M., Klaver, C., Van Der Knijff, R., Roeloffs, M.: Forensic data recovery from flash memory. Small Scale Digital Device Forensics J. 1(1), 1–17 (2007)
Delvaux, J., Verbauwhede, I.: Attacking PUF-based pattern matching key generators via Helper data manipulation. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 106–131. Springer, Heidelberg (2014)
Devadas, S., Yu, M.: Secure and robust error correction for physical unclonable functions. IEEE Des. Test Comput. 27(1), 48–65 (2010)
Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139 (2008)
Gassend, B., Clarke, D., Van Dijk, M., Devadas, S.: Silicon physical random functions. In: Proceedings of the 9th ACM Conference on Computer and Communications Security, pp. 148–160. ACM (2002)
Gassend, B.L.: Physical random functions. Ph.D. thesis, Massachusetts Institute of Technology (2003)
Handschuh, H., Trichina, E.: Securing flash technology. In: Fault Diagnosis and Tolerance in Cryptography, FDTC 2007, pp. 3–20. IEEE (2007)
Guajardo, J., Kumar, S.S., Schrijen, G.-J., Tuyls, P.: FPGA intrinsic PUFs and their use for IP protection. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 63–80. Springer, Heidelberg (2007)
Krawczyk, H.: LFSR-based hashing and authentication. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 129–139. Springer, Heidelberg (1994)
Lee, J., Heo, J., Cho, Y., Hong, J., Shin, S.Y.: Secure deletion for nand flash file system. In: Proceedings of the 2008 ACM Symposium on Applied Computing, pp. 1710–1714. ACM (2008)
Lim, D., Lee, J.W., Gassend, B., Suh, G.E., Van Dijk, M., Devadas, S.: Extracting secret keys from integrated circuits. In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 13, no. 10, pp. 1200–1205 (2005)
Linnartz, J.P., Tuyls, P.: New shielding functions to enhance privacy and prevent misuse of biometric templates. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 393–402. Springer, Heidelberg (2003)
Maes, R., Van Herrewege, A., Verbauwhede, I.: PUFKY: a fully functional PUF-based cryptographic key generator. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 302–319. Springer, Heidelberg (2012)
Paral, Z., Devadas, S.: Reliable and efficient PUF-based key generation using pattern matching. In: IEEE International Symposium on Hardware-Oriented Security and Trust (HOST), pp. 128–133. IEEE (2011)
Prabhu, P., Akel, A., Grupp, L.M., Yu, W.-K.S., Suh, G.E., Kan, E., Swanson, S.: Extracting device fingerprints from flash memory by exploiting physical variations. In: McCune, J.M., Balacheff, B., Perrig, A., Sadeghi, A.-R., Sasse, A., Beres, Y. (eds.) Trust 2011. LNCS, vol. 6740, pp. 188–201. Springer, Heidelberg (2011)
Ravikanth, P.S.: Physical one-way functions. Ph.D. thesis, Massachusetts Institute of Technology (2001)
Selmi, L., Fiegna, C.: Physical aspects of cell operation and reliability. In: Flash Memories, pp. 153–239. Springer, USA (1999)
Škorić, B., Tuyls, P., Ophey, W.: Robust key extraction from physical uncloneable functions. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 407–422. Springer, Heidelberg (2005)
Skorobogatov, S.: Flash memory ‘Bumping’ attacks. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 158–172. Springer, Heidelberg (2010)
Subha, S.: An algorithm for secure deletion in flash memories. In: 2nd IEEE International Conference on Computer Science and Information Technology, ICCSIT 2009, pp. 260–262. IEEE (2009)
Suh, G.E., Devadas, S.: Physical unclonable functions for device authentication and secret key generation. In: Proceedings of the 44th Annual Design Automation Conference, pp. 9–14. ACM (2007)
Suh, G.E., O’Donnell, C.W., Devadas, S.: Aegis: a single-chip secure processor. Inf. Secur. Tech. Rep. 10(2), 63–73 (2005)
Wang, A., Li, Z., Yang, X., Yu, Y.: New attacks and security model of the secure flash disk. Math. Comput. Model. 57(11), 2605–2612 (2013)
Wang, C., Wong, W.F.: Extending the lifetime of nand flash memory by salvaging bad blocks. In: Proceedings of the Conference on Design, Automation and Test in Europe, pp. 260–263. EDA Consortium (2012)
Wang, Y., Yu, W.k., Wu, S., Malysa, G., Suh, G.E., Kan, E.C.: Flash memory for ubiquitous hardware security functions: true random number generation and device fingerprints. In: IEEE Symposium on Security and Privacy (SP), pp. 33–47. IEEE (2012)
Xu, S.Q., Yu, W.k., Suh, G.E., Kan, E.C.: Understanding sources of variations in flash memory for physical unclonable functions. In: IEEE 6th International Memory Workshop (IMW), pp. 1–4. IEEE (2014)
Yu, M.-D.M., M’Raihi, D., Sowell, R., Devadas, S.: Lightweight and secure PUF key storage using limits of machine learning. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 358–373. Springer, Heidelberg (2011)
Zambelli, C., Chimenton, A., Olivo, P.: Reliability issues of nand flash memories. In: Inside NAND Flash Memories, pp. 89–113. Springer, Netherlands (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Jia, S., Xia, L., Wang, Z., Lin, J., Zhang, G., Ji, Y. (2015). Extracting Robust Keys from NAND Flash Physical Unclonable Functions. In: Lopez, J., Mitchell, C. (eds) Information Security. ISC 2015. Lecture Notes in Computer Science(), vol 9290. Springer, Cham. https://doi.org/10.1007/978-3-319-23318-5_24
Download citation
DOI: https://doi.org/10.1007/978-3-319-23318-5_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-23317-8
Online ISBN: 978-3-319-23318-5
eBook Packages: Computer ScienceComputer Science (R0)