[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Integrating ASP into ROS for Reasoning in Robots

  • Conference paper
  • First Online:
Logic Programming and Nonmonotonic Reasoning (LPNMR 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9345))

Abstract

Knowledge representation and reasoning capacities are vital to cognitive robotics because they provide higher level functionalities for reasoning about actions, environments, goals, perception, etc. Although Answer Set Programming (ASP) is well suited for modelling such functions, there was so far no seamless way to use ASP in a robotic setting. We address this shortcoming and show how a recently developed ASP system can be harnessed to provide appropriate reasoning capacities within a robotic system. To be more precise, we furnish a package integrating the new version of the ASP solver clingo with the popular open-source robotic middleware Robot Operating System (ROS). The resulting system, ROSoClingo, provides a generic way by which an ASP program can be used to control the behaviour of a robot and to respond to the results of the robot’s actions.

T. Schaub—Affiliated with Simon Fraser University, Canada, and IIIS Griffith University, Australia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.ros.org.

  2. 2.

    http://gazebosim.org.

  3. 3.

    Topics are a named publisher-subscriber communications mechanism for message passing between ROS nodes.

  4. 4.

    http://www.willowgarage.com.

  5. 5.

    The videos of these scenarios are available at http://goo.gl/g8S5Ky.

References

  1. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Clingo = ASP + control: preliminary report. In: Leuschel, M., Schrijvers, T. (eds.) Technical Communications of the Thirtieth International Conference on Logic Programming (ICLP 2014). Theory and Practice of Logic Programming, Online Supplement (2014). http://arxiv.org/abs/1405.3694v1

  2. Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler, R., Ng, A.: ROS: an open-source robot operating system. In: ICRA Workshop on OSS (2009)

    Google Scholar 

  3. Chen, X., Jiang, J., Ji, J., Jin, G., Wang, F.: Integrating NLP with reasoning about actions for autonomous agents communicating with humans. In: Proceedings of the IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT 2009), pp. 137–140. IEEE (2009)

    Google Scholar 

  4. Chen, X., Ji, J., Jiang, J., Jin, G., Wang, F., Xie, J.: Developing high-level cognitive functions for service robots. In: van der Hoek, W., Kaminka, G., Lespérance, Y., Luck, M., Sen, S. (eds.) Proceedings of the Ninth International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2010), pp. 989–996. IFAAMAS (2010)

    Google Scholar 

  5. Aker, E., Erdogan, A., Erdem, E., Patoglu, V.: Causal reasoning for planning and coordination of multiple housekeeping robots. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS, vol. 6645, pp. 311–316. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Erdem, E., Aker, E., Patoglu, V.: Answer set programming for collaborative housekeeping robotics: representation, reasoning, and execution. Intel. Serv. Robot. 5(4), 275–291 (2012)

    Article  Google Scholar 

  7. Erdem, E., Haspalamutgil, K., Palaz, C., Patoglu, V., Uras, T.: Combining high-level causal reasoning with low-level geometric reasoning and motion planning for robotic manipulation. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2011), pp. 4575–4581. IEEE (2011)

    Google Scholar 

  8. Andres, B., Rajaratnam, D., Sabuncu, O., Schaub, T.: Integrating ASP into ROS for reasoning in robots: Extended version. Unpublished draft (2015). Available at [13]

    Google Scholar 

  9. Gelfond, M., Kahl, Y.: Knowledge Representation, Reasoning, and the Design of Intelligent Agents: The Answer-Set Programming Approach. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  10. Baral, C., Gelfond, M.: Reasoning agents in dynamic domains. In: Minker, J. (ed.) Logic-Based Artificial Intelligence, pp. 257–279. Kluwer Academic, Dordrecht (2000)

    Chapter  Google Scholar 

  11. Levesque, H., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.B.: GOLOG: a logic programming language for dynamic domains. J. Logic Program. 31(1–3), 59–83 (1997)

    Article  MATH  Google Scholar 

  12. Thielscher, M.: Logic-based agents and the frame problem: a case for progression. In: Hendricks, V. (ed.) First-Order Logic Revisited: Proceedings of the Conference 75 Years of First Order Logic (FOL75), pp. 323–336. Logos, Berlin (2004)

    Google Scholar 

  13. Potassco website. http://potassco.sourceforge.net

  14. Grisetti, G., Stachniss, C., Burgard, W.: Improved techniques for grid mapping with rao-blackwellized particle filters. IEEE Trans. Robot. 23(1), 34–46 (2007)

    Article  Google Scholar 

  15. Thrun, S., Bücken, A.: Integrating grid-based and topological maps for mobile robot navigation. In: Clancey, W., Weld, D. (eds.) Proceedings of the Thirteenth National Conference on Artificial Intelligence (AAAI 1996), pp. 944–950. AAAI/MIT Press, Portland (1996)

    Google Scholar 

  16. De Giacomo, G., Reiter, R., Soutchanski, M.: Execution monitoring of high-level robot programs. In: Cohn, A., Schubert, L., Shapiro, S. (eds.) Proceedings of the Sixth International Conference on Principles of Knowledge Representation and Reasoning (KR 1998), pp. 453–465. Morgan Kaufmann, Trento (1998)

    Google Scholar 

  17. Pettersson, O.: Execution monitoring in robotics: a survey. Robot. Autonom. Syst. 53(2), 73–88 (2005)

    Article  MathSciNet  Google Scholar 

  18. Nilsson, N.: Teleo-reactive programs for agent control. J. Artif. Intell. Res. 1, 139–158 (1994)

    Google Scholar 

  19. Khandelwal, P., Yang, F., Leonetti, M., Lifschitz, V., Stone, P.: Planning in action language BC while learning action costs for mobile robots. In: International Conference on Automated Planning and Scheduling (ICAPS) (2014)

    Google Scholar 

Download references

Acknowledgments

This work was funded by ARC (DP150103034) and DFG (550/9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torsten Schaub .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Andres, B., Rajaratnam, D., Sabuncu, O., Schaub, T. (2015). Integrating ASP into ROS for Reasoning in Robots. In: Calimeri, F., Ianni, G., Truszczynski, M. (eds) Logic Programming and Nonmonotonic Reasoning. LPNMR 2015. Lecture Notes in Computer Science(), vol 9345. Springer, Cham. https://doi.org/10.1007/978-3-319-23264-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23264-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23263-8

  • Online ISBN: 978-3-319-23264-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics