[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Compacting Boolean Formulae for Inference in Probabilistic Logic Programming

  • Conference paper
  • First Online:
Logic Programming and Nonmonotonic Reasoning (LPNMR 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9345))

Abstract

Knowledge compilation converts Boolean formulae for which some inference tasks are computationally expensive into a representation where the same tasks are tractable. ProbLog is a state-of-the-art Probabilistic Logic Programming system that uses knowledge compilation to reduce the expensive probabilistic inference to an efficient weighted model counting. Motivated to improve ProbLog’s performance we present an approach that optimizes Boolean formulae in order to speed-up knowledge compilation. We identify 7 Boolean subformulae patterns that can be used to re-write Boolean formulae. We implemented an algorithm with polynomial complexity which detects and compacts 6 of these patterns. We employ our method in the inference pipeline of ProbLog and conduct extensive experiments. We show that our compaction method improves knowledge compilation and consecutively the overall inference performance. Furthermore, using compaction reduces the number of time-outs, allowing us to solve previously unsolvable problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Probabilistic facts can be ground or non-ground. [11] proves that finitely many groundings of non-ground probabilistic facts are sufficient to compute probabilities. That is why we restrict our discussion to programs with ground probabilistic facts.

  2. 2.

    When it is clear from the context we use the term ProbLog to refer to either the language or the system. Otherwise we state it explicitly.

  3. 3.

    More details for the algorithm and the full complexity analysis can be found at: https://lirias.kuleuven.be/bitstream/123456789/500398/5/appendix.pdf.

References

  1. Aloul, F.A., Markov, I.L., Sakallah, K.A.: Faster SAT and smaller BDDs via common function structure. In: ICCAD, pp. 443–448 (2001)

    Google Scholar 

  2. Bacchus, F., Winter, J.: Effective preprocessing with hyper-resolution and equality reduction. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 341–355. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Trans. Comput. 35(8), 677–691 (1986)

    Article  MATH  Google Scholar 

  4. Chen, W., Swift, T., Warren, D.S.: Efficient top-down computation of queries under the well-founded semantics. JLP 24(3), 161–199 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  5. Darwiche, A.: A compiler for deterministic, decomposable negation normal form. In: AAAI/IAAI, pp. 627–634. AAAI Press/MIT Press (2002)

    Google Scholar 

  6. Darwiche, A., Marquis, P.: A knowledge compilation map. JAIR 17, 229–264 (2002)

    MATH  MathSciNet  Google Scholar 

  7. De Raedt, L., Kimmig, A., Toivonen, H.: ProbLog: a probabilistic Prolog and its application in link discovery. In: IJCAI, pp. 2468–2473. AAAI Press (2007)

    Google Scholar 

  8. Fierens, D., Van den Broeck, G., Renkens, J., Shterionov, D.S., Gutmann, B., Thon, I., Janssens, G., De Raedt, L.: Inference and learning in probabilistic logic programs using weighted boolean formulas. TPLP 15(3), 358–401 (2015)

    Google Scholar 

  9. Hintsanen, P.: The most reliable subgraph problem. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 471–478. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Kimmig, A., Costa, F.: Link and node prediction in metabolic networks with probabilistic logic. In: Berthold, M.R. (ed.) Bisociative Knowledge Discovery. LNCS, vol. 7250, pp. 407–426. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Kimmig, A., Demoen, B., De Raedt, L., Santos Costa, V., Rocha, R.: On the implementation of the probabilistic logic programming language ProbLog. TPLP 11, 235–262 (2011)

    MATH  Google Scholar 

  12. Kowalski, R.A.: Predicate logic as programming language. In: IFIP Congress, pp. 569–574 (1974)

    Google Scholar 

  13. Lagniez, J., Marquis, P.: Preprocessing for propositional model counting. In: AAAI, pp. 2688–2694 (2014)

    Google Scholar 

  14. Mantadelis, T., Demoen, B., Janssens, G.: A simplified fast interface for the use of CUDD for binary decision diagrams (2008). http://people.cs.kuleuven.be/theofrastos.mantadelis/tools/simplecudd.html

  15. Mantadelis, T., Janssens, G.: Dedicated tabling for a probabilistic setting. In: ICLP (Technical Communications), LIPIcs, vol. 7, pp. 124–133 (2010)

    Google Scholar 

  16. Mantadelis, T., Janssens, G.: Variable compression in ProbLog. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 504–518. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Mantadelis, T., Janssens, G.: Nesting probabilistic inference (2011). CoRR, abs/1112.3785

    Google Scholar 

  18. Mantadelis, T., Rocha, R., Kimmig, A., Janssens, G.: Preprocessing boolean formulae for BDDs in a probabilistic context. In: Janhunen, T., Niemelä, I. (eds.) JELIA 2010. LNCS, vol. 6341, pp. 260–272. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  19. Moldovan, B., van Otterlo, M., Moreno, P., Santos-Victor, J., De Raedt, L.: Statistical relational learning of object affordances for robotic manipulation. In: ILP, p. 6 (2012)

    Google Scholar 

  20. Mostow, J.: Towards automated development of specialized algorithms for design synthesis: knowledge compilation as an approach to computer-aided design. Res. Eng. Des. 1(3–4), 167–186 (1990)

    Article  Google Scholar 

  21. Namioka, Y., Tanaka, T.: Knowledge compilation for interactive design of sequence control programs. In: IEA/AIE, pp. 363–368 (1996)

    Google Scholar 

  22. Narodytska, N., Walsh, T.: Constraint and variable ordering heuristics for compiling configuration problems. In: IJCAI, pp. 149–154 (2007)

    Google Scholar 

  23. Panda, S., Somenzi, F.: Who are the variables in your neighborhood. In: ICCAD, pp. 74–77 (1995)

    Google Scholar 

  24. Rauzy, A., Châtelet, E., Dutuit, Y., Bérenguer, C.: A practical comparison of methods to assess sum-of-products. Reliab. Eng. Syst. Saf. 79(1), 33–42 (2003)

    Article  Google Scholar 

  25. Shterionov, D., Mantadelis, T., Janssens, G.: Pattern-based compaction for ProbLog inference. In: ICLP (Technical Communications), pp. 1–4 (2013)

    Google Scholar 

  26. Shterionov, D., Janssens, G.: Implementation and performance of probabilistic inference pipelines. In: Pontelli, E., Son, T.C. (eds.) PADL 2015. LNCS, vol. 9131, pp. 90–104. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  27. Valiant, L.G.: Why is Boolean complexity theory difficult? In: London Mathematical Society Symposium on Boolean Function Complexity, pp. 84–94 (1992)

    Google Scholar 

  28. Vlasselaer, J., Meert, W.: Statistical relational learning for prognostics. In: Belgian-Dutch Conference on Machine Learning, pp. 45–50 (2012)

    Google Scholar 

Download references

Acknowledgments

We want to thank the anonymous reviewers for their comments and help to improve our paper. Theofrastos Mantadelis is funded by the Portuguese Foundation for Science and Technology (FCT) within the projects SIBILA NORTE-07-0124-FEDER-000059 and UID/EEA/50014/2013. Dimitar Shterionov is funded by KU Leuven within the project GOA 13/010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theofrastos Mantadelis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Mantadelis, T., Shterionov, D., Janssens, G. (2015). Compacting Boolean Formulae for Inference in Probabilistic Logic Programming. In: Calimeri, F., Ianni, G., Truszczynski, M. (eds) Logic Programming and Nonmonotonic Reasoning. LPNMR 2015. Lecture Notes in Computer Science(), vol 9345. Springer, Cham. https://doi.org/10.1007/978-3-319-23264-5_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23264-5_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23263-8

  • Online ISBN: 978-3-319-23264-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics