Abstract
This paper describes our recognition system for handwritten Arabic. We propose novel text line image normalization procedures and a new feature extraction method. Our recognition system is based on the Kaldi recognition toolkit which is widely used in automatic speech recognition (ASR) research. We show that the combination of sophisticated text image normalization and state-of-the art techniques originating from ASR results in a very robust and accurate recognizer. Our system outperforms the best systems in the literature by over 20% relative on the abcde-s configuration of the IFN/ENIT database and achieves comparable performance on other configurations. On the KHATT corpus, we report 11% relative improvement compared to the best system in the literature.
Chapter PDF
Similar content being viewed by others
References
Ahmad, I., Fink, G.A., Mahmoud, S.A.: Improvements in sub-character HMM model based arabic text recognition. In: ICFHR (2014)
Anastasakos, T., McDonough, J., Schwartz, R., Makhoul, J.: A compact model for speaker-adaptive training. In: ICSL. IEEE (1996)
Azeem, S.A., Ahmed, H.: Effective technique for the recognition of offline Arabic handwritten words using hidden Markov models. IJDAR 16(4), 399–412 (2013)
Dreuw, P., Rybach, D., Gollan, C., Ney, H.: Writer adaptive training and writing variant model refinement for offline arabic handwriting recognition. In: ICDAR. IEEE (2009)
Duda, R.O., Hart, P.E.: Use of the Hough transformation to detect lines and curves in pictures. Communications of the ACM 15(1) (1972)
El-Mahallawy, M.S.M.: A Large Scale HMM-Based Omni Font-Written OCR System for Cursive Scripts. Ph.D. thesis, Faculty of Engineering, Cairo University Giza, Egypt (2008)
Gales, M.: Semi-tied covariance matrices for hidden Markov models. Transactions on Speech and Audio Processing 7(3), 272–281 (1999)
Hamdani, M., Mousa, A.D., Ney, H.: Open vocabulary arabic handwriting recognition using morphological decomposition. In: ICDAR. IEEE (2013)
Huang, X., Acero, A., Hon, H.W., R., R.: Spoken language processing: a guide to theory, algorithm, and system development. Prentice Hall PTR (2001)
Likforman-Sulem, L., Mohammad, R.A.H., Mokbel, C., Menasri, F., Bianne-Bernard, A., Kermorvant, C.: Features for HMM-based arabic handwritten word recognition systems. In: Guide to OCR for Arabic Scripts. Springer (2012)
Mahmoud, S.A., Ahmad, I., Alshayeb, M., Al-Khatib, W.G., Parvez, M.T., Fink, G.A., Märgner, V., Abed, H.E.: KHATT: arabic offline handwritten text database. In: ICFHR (2012)
Margner, V., Abed, H.E.: ICFHR 2010-arabic handwriting recognition competition. In: ICFHR. IEEE (2010)
Märgner, V., El Abed, H.: Arabic handwriting recognition competitions. In: Guide to OCR for Arabic Scripts, pp. 395–422. Springer (2012)
Pechwitz, M., Maddouri, S.S., Märgner, V., Ellouze, N., Amiri, H., et al.: IFN/ENIT-database of handwritten arabic words. In: CIFED (2002)
Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., Hannemann, M., Motlicek, P., Qian, Y., Schwarz, P., Silovsky, J., Stemmer, G., Vesely, K.: The kaldi speech recognition toolkit. In: ASRU (2011)
Povey, D., Zhang, X., Khudanpur, S.: Parallel training of Deep Neural Networks with Natural Gradient and Parameter Averaging. CoRR (2014)
Rybach, D., Gollan, C., Heigold, G., Hoffmeister, B., Lööf, J., Schlüter, R., Ney, H.: The RWTH Aachen university open source speech recognition system. In: Interspeech (2009)
Stahlberg, F., Vogel, S.: Detecting dense foreground stripes in arabic handwriting for accurate baseline positioning. In: ICDAR. IEEE (2015) (to be published)
Young, S., Woodland, P., Evermann, G., Gales, M.: The HTK Toolkit 3.4. 1 (2013)
Zhang, T.Y., Suen, C.Y.: A fast parallel algorithm for thinning digital patterns. Communications of the ACM 27(3), 236–239 (1984)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Stahlberg, F., Vogel, S. (2015). The QCRI Recognition System for Handwritten Arabic. In: Murino, V., Puppo, E. (eds) Image Analysis and Processing — ICIAP 2015. ICIAP 2015. Lecture Notes in Computer Science(), vol 9280. Springer, Cham. https://doi.org/10.1007/978-3-319-23234-8_26
Download citation
DOI: https://doi.org/10.1007/978-3-319-23234-8_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-23233-1
Online ISBN: 978-3-319-23234-8
eBook Packages: Computer ScienceComputer Science (R0)