[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Sanitization Approach of Privacy Preserving Utility Mining

  • Conference paper
  • First Online:
Genetic and Evolutionary Computing (GEC 2015)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 388))

Included in the following conference series:

  • International Conference on Genetic and Evolutionary Computing

Abstract

High-Utility Itemset Mining (HUIM) considers both quantity and profit factors to measure whether an item or itemset is a profitable product. With the rapid growth of security considerations, privacy-preserving utility mining (PPUM) has become a critical issue in HUIM. In this paper, an efficient algorithm is proposed to minimize side effects in the sanitization process for hiding sensitive high utility itemsets. Three similarity measurements are also designed as the new standard used in PPUM. Experiments are also conducted to show the performance of the designed algorithm in terms of general side effects in PPDM and the new defined measurements in PPUM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: The International Conference on Very Large Data Bases, pp. 487–499 (1994)

    Google Scholar 

  2. Agrawal, R., Srikant, R.: Privacy-preserving data mining. ACM SIGMOD Record 29(2), 439–450 (2000)

    Article  Google Scholar 

  3. Amiri, A.: Dare to share: Protecting sensitive knowledge with data sanitization. Decision Support Systems 43(1), 181–191 (2007)

    Article  Google Scholar 

  4. Atallah, M., Elmagarmid, A., Ibrahim, M., Bertino, E., Verykios, V.: Disclosure limitation of sensitive rules. In: The Workshop on Knowledge and Data Engineering Exchange, pp. 45–52 (1999)

    Google Scholar 

  5. Bertino, E., Fovino, I.N., Provenza, L.P.: A framework for evaluating privacy preserving data mining algorithms. Data Mining and Knowledge Discovery 11(2), 121–154 (2005)

    Article  MathSciNet  Google Scholar 

  6. Chen, M.S., Han, J., Yu, P.S.: Data mining: An overview from a database perspective. IEEE Transactions on Knowledge and Data Engineering 8(6), 866–883 (1996)

    Article  Google Scholar 

  7. Dasseni, E., Verykios, V.S., Elmagarmid, A.K., Bertino, E.: Hiding association rules by using confidence and support. In: Moskowitz, I.S. (ed.) IH 2001. LNCS, vol. 2137, pp. 369–383. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  8. Evfimievski, A., Srikant, R., Agrawal, R., Gehrke, J.: Fast algorithms for mining association rules in large databases. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 217–228 (2002)

    Google Scholar 

  9. Fournier-Viger, P., Gomariz, A., Gueniche, T., Soltani, A., Wu, C.W., Tseng, V.S.: SPMF: a Java Open-Source Pattern Mining Library. Journal of Machine Learning Research 15, 3389–3393 (2014)

    Google Scholar 

  10. Giannotti, F., Lakshmanan, L.V.S., Monreale, A., Pedreschi, D., Wang, H.W.: Privacy-preserving mining of association rules from outsourced transaction databases. IEEE Systems Journal 7(3), 385–395 (2012)

    Article  Google Scholar 

  11. Goethals, B., Zaki, M.J.: Frequent itemset mining implementations repository (2012). http://fimi.ua.ac.be/data/

  12. Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate generation: A frequent-pattern tree approach. Data Mining and Knowledge Discovery 8(1), 53–87 (2004)

    Article  MathSciNet  Google Scholar 

  13. Hong, T.P., Lin, C.W., Yang, K.T., Wang, S.L.: Using TF-IDF to hide sensitive itemsets. Applied Intelligence 38(4), 502–510 (2013)

    Article  Google Scholar 

  14. Li, X.B., Sarkar, S.: A tree-based data perturbation approach for privacy-preserving data mining. IEEE Transactions on Knowledge and Data Engineering 18(9), 1278–1283 (2006)

    Article  Google Scholar 

  15. Li, Y.C., Yeh, J.S., Chang, C.C.: MICF: An effective sanitization algorithm for hiding sensitive patterns on data mining. Advanced Engineering Informatics 21(3), 269–280 (2007)

    Article  Google Scholar 

  16. Lindell, Y., Pinkas, B.: Privacy preserving data mining. In: International Cryptology Conference on Advances in Cryptology, 36–54 (2000)

    Google Scholar 

  17. Liu, Y., Liao, W., Choudhary, A.K.: A two-phase algorithm for fast discovery of high utility itemsets. In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 689–695. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  18. Lin, C.W., Hong, T.P., Lu, W.H.: An effective tree structure for mining high utility itemsets. Expert Systems with Applications 38(6), 7419–7424 (2011)

    Article  Google Scholar 

  19. Lin, C.W., Zhang, B., Yang, K.T., Hong, T.P.: Efficiently hiding sensitive itemsets with transaction deletion based on genetic algorithms. The Scientific World Journal 2014, 1–13 (2014)

    Google Scholar 

  20. Lin, C.W., Hong, T.P., Wong, J.W., Lan, G.C., Lin, W.Y.: A GA-Based approach to hide sensitive high utility itemsets. The Scientific World Journal 2014, 1–12 (2014)

    Google Scholar 

  21. Sun, X., Yu, P.S.: A border-based approach for hiding sensitive frequent itemsets. In: IEEE International Conference on Data Mining, pp. 27–30 (2005)

    Google Scholar 

  22. Verykios, V.S., Elmagarmid, A.K., Bertino, E., Saygin, Y., Dasseni, E.: Association rule hiding. IEEE Transactions on Knowledge and Data Engineering 16(4), 434–447 (2004)

    Article  Google Scholar 

  23. Verykios, V.S., Bertino, E., Fovino, I.N., Provenza, L.P., Saygin, Y., Theodoridis, Y.: State-of-the-art in privacy preserving data mining. ACM SIGMOD Record 33(1), 50–57 (2004)

    Article  Google Scholar 

  24. Yao, H., Hamilton, H.J., Butz, C.J.: A foundational approach to mining itemset utilities from databases. In: SIAM International Conference on Data Mining, pp. 482–486 (2004)

    Google Scholar 

  25. Yao, H., Hamilton, H.J.: Mining itemset utilities from transaction databases. Data and Knowledge Engineering 59(3), 603–626 (2006)

    Article  Google Scholar 

  26. Yeh, J.S., Hsu, P.C.: HHUIF and MSICF: Novel algorithms for privacy preserving utility mining. Expert Systems with Applications 37(7), 4779–4786 (2010)

    Article  Google Scholar 

  27. Yun, U., Kim, J.: A fast perturbation algorithm using tree structure for privacy preserving utility mining. Expert Systems with Applications 42(3), 1149–1165 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerry Chun-Wei Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Lin, J.CW., Wu, TY., Fournier-Viger, P., Lin, G., Hong, TP., Pan, JS. (2016). A Sanitization Approach of Privacy Preserving Utility Mining. In: Zin, T., Lin, JW., Pan, JS., Tin, P., Yokota, M. (eds) Genetic and Evolutionary Computing. GEC 2015. Advances in Intelligent Systems and Computing, vol 388. Springer, Cham. https://doi.org/10.1007/978-3-319-23207-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23207-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23206-5

  • Online ISBN: 978-3-319-23207-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics