Abstract
Continuous skyline query processing is becoming wide spread. Most of the work done in this field is focused to process skyline queries on a single machine. Our focus is to process continuous skyline queries over data streams, where data is arriving at server in the form of continuous updates from multiple distributed input sources. A single machine solution to run continuous skyline queries over streaming data is not very scalable. Moreover, streaming data arriving from multiple sources can overwhelm server’s computing power, specially if the skyline queries are involved to compute high quality multidimensional skyline points. We propose a three layer solution to compute continuous skyline points. A bottom layer in our approach sends the local skyline points to the middle layer, which after receiving feedback from the server filters the false-positives, and produces the semi-global skyline points to be sent to the server for global skyline. Our approach being scalable distributes the workloads across the network on multiple machines and reduces the number of unnecessary data points to be sent to the server, allowing it to produce qualitative skyline points.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Lu, H., Zhou, Y., Haustad, J.: Continuous skyline monitoring over distributed data streams. In: Gertz, M., Ludäscher, B. (eds.) SSDBM 2010. LNCS, vol. 6187, pp. 565–583. Springer, Heidelberg (2010)
Borzsony, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings of the 17th International Conference on Data Engineering, pp. 421–430. IEEE (2001)
Endres, M., Roocks, P., Kießling, W.: Scalagon: an efficient skyline algorithm for all seasons. In: Renz, M., Shahabi, C., Zhou, X., Chemma, M.A. (eds.) DASFAA 2015. LNCS, vol. 9050, pp. 292–308. Springer, Heidelberg (2015)
Liknes, S., Vlachou, A., Doulkeridis, C., Nørvåg, K.: APSkyline: improved skyline computation for multicore architectures. In: Bhowmick, S.S., Dyreson, C.E., Jensen, C.S., Lee, M.L., Muliantara, A., Thalheim, B. (eds.) DASFAA 2014, Part I. LNCS, vol. 8421, pp. 312–326. Springer, Heidelberg (2014)
Endres, M., Kießling, W.: High parallel skyline computation over low-cardinality domains. In: Manolopoulos, Y., Trajcevski, G., Kon-Popovska, M. (eds.) ADBIS 2014. LNCS, vol. 8716, pp. 97–111. Springer, Heidelberg (2014)
Chester, S., Sidlauskas, D., Assent, I.: Bøgh, K.S.: Scalable parallelization of skyline computation for multi-core processors (2015)
Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with presorting. In: ICDE, vol. 3, pp. 717–719 (2003)
Tan, K.L., Eng, P.K., Ooi, B.C., et al.: Efficient progressive skyline computation. In: VLDB, vol. 1, pp. 301–310 (2001)
Kossmann, D., Ramsak, F., Rost, S.: Shooting stars in the sky: an online algorithm for skyline queries. In: Proceedings of the 28th International Conference on Very Large Data Bases, VLDB Endowment, pp. 275–286 (2002)
Papadias, D., Tao, Y., Fu, G., Seeger, B.: An optimal and progressive algorithm for skyline queries. In: Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data, pp. 467–478. ACM (2003)
Yiu, M.L., Mamoulis, N.: Efficient processing of top-k dominating queries on multi-dimensional data. In: Proceedings of the 33rd International Conference on Very Large Data Bases, VLDB Endowment, pp. 483–494 (2007)
Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive skyline computation in database systems. ACM Trans. Database Syst. (TODS) 30(1), 41–82 (2005)
Dellis, E., Seeger, B.: Efficient computation of reverse skyline queries. In: Proceedings of the 33rd International Conference on Very Large Data Bases, VLDB Endowment, pp. 291–302 (2007)
Morse, M., Patel, J.M., Jagadish, H.: Efficient skyline computation over low-cardinality domains. In: Proceedings of the 33rd International Conference on Very Large Data Bases, VLDB Endowment, pp. 267–278 (2007)
Lee, K.C., Zheng, B., Li, H., Lee, W.C.: Approaching the skyline in Z order. In: Proceedings of the 33rd International Conference on Very Large Data Bases, VLDB Endowment, pp. 279–290 (2007)
Pei, J., Jiang, B., Lin, X., Yuan, Y.: Probabilistic skylines on uncertain data. In: Proceedings of the 33rd International Conference on Very Large Data Bases, VLDB Endowment, pp. 15–26 (2007)
Balke, W.-T., Güntzer, U., Zheng, J.X.: Efficient distributed skylining for web information systems. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 256–273. Springer, Heidelberg (2004)
Wu, P., Zhang, C., Feng, Y., Zhao, B.Y., Agrawal, D.P., El Abbadi, A.: Parallelizing skyline queries for scalable distribution. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 112–130. Springer, Heidelberg (2006)
Huang, Z., Jensen, C.S., Lu, H., Ooi, B.C.: Skyline queries against mobile lightweight devices in manets. In: Proceedings of the 22nd International Conference on Data Engineering, ICDE 2006 p. 66. IEEE (2006)
Zhu, L., Tao, Y., Zhou, S.: Distributed skyline retrieval with low bandwidth consumption. IEEE Trans. Knowl. Data Eng. 21(3), 384–400 (2009)
Huang, Z., Lu, H., Ooi, B.C., Tung, A.: Continuous skyline queries for moving objects. IEEE Trans. Knowl. Data Eng. 18(12), 1645–1658 (2006)
Lin, X., Yuan, Y., Wang, W., Lu, H.: Stabbing the sky: Efficient skyline computation over sliding windows. In: Proceedings 21st International Conference on Data Engineering, ICDE 2005, pp. 502–513. IEEE (2005)
Tao, Y., Papadias, D.: Maintaining sliding window skylines on data streams. IEEE Trans. Knowl. Data Eng. 18(3), 377–391 (2006)
Wu, P., Agrawal, D., Egecioglu, O., El Abbadi, A.: Deltasky: Optimal maintenance of skyline deletions without exclusive dominance region generation. In: IEEE 23rd International Conference on Data Engineering, ICDE 2007, pp. 486–495. IEEE (2007)
Zhang, Z., Cheng, R., Papadias, D., Tung, A.K.: Minimizing the communication cost for continuous skyline maintenance. In: Proceedings of the 2009 ACM SIGMOD International Conference on Management of data, pp. 495–508. ACM (2009)
Mouratidis, K., Papadias, D., Hadjieleftheriou, M.: Conceptual partitioning: an efficient method for continuous nearest neighbor monitoring. In: Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data, pp. 634–645. ACM (2005)
Mullesgaard, K., Pedersen, J.L., Lu, H., Zhou, Y.: Efficient skyline computation in mapreduce. In: 17th International Conference on Extending Database Technology (EDBT), pp. 37–48 (2014)
Lu, H., Zhou, Y., Haustad, J.: Efficient and scalable continuous skyline monitoring in two-tier streaming settings. Inf. Syst. 38(1), 68–81 (2013)
Cui, B., Lu, H., Xu, Q., Chen, L., Dai, Y., Zhou, Y.: Parallel distributed processing of constrained skyline queries by filtering. In: IEEE 24th International Conference on Data Engineering, ICDE 2008, pp. 546–555. IEEE (2008)
NASDAQ. http://www.infochimps.com/. Accessed 03 December 2014
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Leghari, A.K., Cao, J., Zhou, Y. (2015). Feedback Based Continuous Skyline Queries Over a Distributed Framework. In: Tadeusz, M., Valduriez, P., Bellatreche, L. (eds) Advances in Databases and Information Systems. ADBIS 2015. Lecture Notes in Computer Science(), vol 9282. Springer, Cham. https://doi.org/10.1007/978-3-319-23135-8_20
Download citation
DOI: https://doi.org/10.1007/978-3-319-23135-8_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-23134-1
Online ISBN: 978-3-319-23135-8
eBook Packages: Computer ScienceComputer Science (R0)