Abstract
Text-based and model-based process descriptions have their own particular strengths and, as such, appeal to different stakeholders. For this reason, it is not unusual to find within an organization descriptions of the same business processes in both modes. When considering that hundreds of such descriptions may be in use in a particular organization by dozens of people, using a variety of editors, there is a clear risk that such models become misaligned. To reduce the time and effort needed to repair such situations, this paper presents the first approach to automatically identify inconsistencies between a process model and a corresponding textual description. Our approach leverages natural language processing techniques to identify cases where the two process representations describe activities in different orders, as well as model activities that are missing from the textual description. A quantitative evaluation with 46 real-life model-text pairs demonstrates that our approach allows users to quickly and effectively identify those descriptions in a process repository that are inconsistent.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
van der Aa, H., Leopold, H., Mannhardt, F., Reijers, H.A.: On the fragmentation of process information: challenges, solutions, and outlook. In: Gaaloul, K., Schmidt, R., Nurcan, S., Guerreiro, S., Ma, Q. (eds.) BPMDS 2015 and EMMSAD 2015. LNBIP, vol. 214, pp. 3–18. Springer, Heidelberg (2015)
Achananuparp, P., Hu, X., Shen, X.: The evaluation of sentence similarity measures. In: Song, I.-Y., Eder, J., Nguyen, T.M. (eds.) DaWaK 2008. LNCS, vol. 5182, pp. 305–316. Springer, Heidelberg (2008)
Allweyer, T.: BPMN 2.0: introduction to the standard for business process modeling. BoD-Books on Demand (2010)
Bajwa, I.S., Choudhary, M.A.: From natural language software specifications to UML class models. In: Zhang, R., Zhang, J., Zhang, Z., Filipe, J., Cordeiro, J. (eds.) ICEIS 2011. LNBIP, vol. 102, pp. 224–237. Springer, Heidelberg (2012)
Cayoglu, U., Dijkman, R., Dumas, M., Fettke, P., Garcıa-Banuelos, L., Hake, P., Klinkmüller, C., Leopold, H., Ludwig, A., Loos, P., et al.: The process model matching contest 2013. In: 4th International Workshop on Process Model Collections: Management and Reuse (PMC-MR 2013) (2013)
Cayoglu, U., Oberweis, A., Schoknecht, A., Ullrich, M.: Triple-s: A matching approach for Petri nets on syntactic, semantic and structural level
Chakraborty, S., Sarker, S., Sarker, S.: An exploration into the process of requirements elicitation: A grounded approach. J. AIS 11(4) (2010)
De Marneffe, M.C., Manning, C.D.: The stanford typed dependencies representation. In: Coling 2008: Proceedings of the workshop on Cross-Framework and Cross-Domain Parser Evaluation, pp. 1–8 (2008)
Dijkman, R., Dumas, M., Van Dongen, B., Käärik, R., Mendling, J.: Similarity of business process models: Metrics and evaluation. Information Systems 36(2), 498–516 (2011)
Doan, A., Halevy, A.Y.: Semantic integration research in the database community: A brief survey. AI magazine 26(1), 83 (2005)
Dumas, M., Rosa, M., Mendling, J., Reijers, H.: Fundamentals of Business Process Management. Springer (2013)
Ehrig, M., Koschmider, A., Oberweis, A.: Measuring similarity between semantic business process models. In: Proceedings of the Fourth Asia-Pacific Conference on Comceptual Modelling, vol. 67, pp. 71–80 (2007)
Euzenat, J., Shvaiko, P., et al.: Ontology matching, vol. 18. Springer (2007)
Friedrich, F., Mendling, J., Puhlmann, F.: Process model generation from natural language text. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS, vol. 6741, pp. 482–496. Springer, Heidelberg (2011)
Giunchiglia, F., Shvaiko, P., Yatskevich, M.: Semantic matching. In: Encyclopedia of Database Systems, pp. 2561–2566. Springer (2009)
Gomez, F., Segami, C., Delaune, C.: A system for the semiautomatic generation of ER models from natural language specifications. Data & Knowledge Engineering 29(1), 57–81 (1999)
Jurafsky, D., Martin, J.H.: Speech & language processing. Pearson Education India (2000)
Kettinger, W., Teng, J., Guha, S.: Business Process Change: a Study of Methodologies, Techniques, and Tools. MIS quarterly, pp. 55–80 (1997)
Klinkmüller, C., Weber, I., Mendling, J., Leopold, H., Ludwig, A.: Increasing recall of process model matching by improved activity label matching. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 211–218. Springer, Heidelberg (2013)
Kunze, M., Weidlich, M., Weske, M.: Behavioral similarity – a proper metric. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 166–181. Springer, Heidelberg (2011)
La Rosa, M., Dumas, M., Uba, R., Dijkman, R.: Business process model merging: An approach to business process consolidation. ACM Transactions on Software Engineering and Methodology (TOSEM) 22(2), 11 (2013)
Lavoie, B., Rambow, O., Reiter, E.: The modelexplainer. In: Eighth International Workshop on Natural Language Generation, Herstmonceux, Sussex (1996)
Leopold, H.: Natural language in business process models. Springer (2013)
Leopold, H., Mendling, J., Polyvyanyy, A.: Supporting process model validation through natural language generation. IEEE Transactions on Software Engineering 40(8), 818–840 (2014)
Lin, D.: An information-theoretic definition of similarity. ICML 98, 296–304 (1998)
Manning, C.D., Raghavan, P., Schütze, H.: Introduction to informationretrieval, vol. 1. Cambridge university press Cambridge (2008)
Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S.J., McClosky, D.: The Stanford CoreNLP natural language processing toolkit. In: Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pp. 55–60 (2014)
Meziane, F., Athanasakis, N., Ananiadou, S.: Generating natural language specifications from UML class diagrams. Requirements Engineering 13(1), 1–18 (2008)
Mihalcea, R., Corley, C., Strapparava, C.: Corpus-based and knowledge-based measures of text semantic similarity. In: AAAI, vol. 6, pp. 775–780 (2006)
Noy, N.F.: Semantic integration: a survey of ontology-based approaches. ACM Sigmod Record 33(4), 65–70 (2004)
Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. The VLDB Journal 10(4), 334–350 (2001)
Rosemann, M.: Potential Pitfalls of Process Modeling: Part A. Business Process Management Journal 12(2), 249–254 (2006)
Schumacher, P., Minor, M., Schulte-Zurhausen, E.: Extracting and enriching workflows from text. In: 2013 IEEE 14th International Conference on Information Reuse and Integration (IRI), pp. 285–292. IEEE (2013)
Uba, R., Dumas, M., García-Bañuelos, L., La Rosa, M.: Clone detection in repositories of business process models. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 248–264. Springer, Heidelberg (2011)
Wang, Y.Y., Waibel, A.: Decoding algorithm in statistical machine translation. In: Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics and Eighth Conference of the European Chapter of the Association for Computational Linguistics, pp. 366–372 (1997)
Weidlich, M., Dijkman, R., Mendling, J.: The ICoP framework: identification of correspondences between process models. In: Pernici, B. (ed.) CAiSE 2010. LNCS, vol. 6051, pp. 483–498. Springer, Heidelberg (2010)
Weidlich, M., Mendling, J., Weske, M.: Efficient consistency measurement based on behavioral profiles of process models. IEEE Transactions on Software Engineering 37(3), 410–429 (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
van der Aa, H., Leopold, H., Reijers, H.A. (2015). Detecting Inconsistencies Between Process Models and Textual Descriptions. In: Motahari-Nezhad, H., Recker, J., Weidlich, M. (eds) Business Process Management. BPM 2016. Lecture Notes in Computer Science(), vol 9253. Springer, Cham. https://doi.org/10.1007/978-3-319-23063-4_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-23063-4_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-23062-7
Online ISBN: 978-3-319-23063-4
eBook Packages: Computer ScienceComputer Science (R0)