Abstract
CANDECOMP/PARAFAC (CP) approximates multiway data by a sum of rank-1 tensors. Our recent study has presented a method to rank-1 tensor deflation, i.e. sequential extraction of rank-1 tensor components. In this paper, we extend the method to block deflation problem. When at least two factor matrices have full column rank, one can extract two rank-1 tensors simultaneously, and rank of the data tensor is reduced by 2. For decomposition of order-3 tensors of size \(R \times R \times R\) and rank-R, the block deflation has a complexity of \({\mathcal {O}}(R^3)\) per iteration which is lower than the cost \({\mathcal {O}}(R^4)\) of the ALS algorithm for the overall CP decomposition.
P. Tichavský—The work of P. Tichavský was supported by The Czech Science Foundation through Project No. 14-13713S.
A. Cichocki—Also affiliated with the EE Dept., Warsaw University of Technology and with Systems Research Institute, Polish Academy of Science, Poland.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Stegeman, A., Comon, P.: Subtracting a best rank-1 approximation may increase tensor rank. Linear Algebra Appl. 433(7), 1276–1300 (2010)
Phan, A.H., Tichavský, P., Cichocki, A.: Deflation method for CANDECOMP/PARAFAC tensor decomposition. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), May 2014, pp. 6736–6740 (2014)
Phan, A.H., Tichavský, P., Cichocki, A.: Tensor deflation for CANDECOMP/PARAFAC. Part 1: alternating subspace update algorithm. IEEE Trans. Sig. Process. (2015). (in print)
Cichocki, A., Zdunek, R., Phan, A.H., Amari, S.: Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation. Wiley, Chichester (2009)
De Lathauwer, L., Nion, D.: Decompositions of a higher-order tensor in block terms - part iii: alternating least squares algorithms. SIAM J. Matrix Anal. Appl. 30(3), 1067–1083 (2008). Special issue tensor decompositions and applications
Sorber, L., Van Barel, M., De Lathauwer, L.: Structured data fusion. Technical report, ESAT-SISTA, Internal report 13–177 (2013)
Phan, A.H., Tichavský, P., Cichocki, A.: Tensor deflation for CANDECOMP/PARAFAC. Part 3: rank splitting. arXiv, CoRR, vol. abs/1506.04971 (2015)
De Lathauwer, L., Moor, B.D., Vandewalle, J.: On the best rank-1 and rank-(R1, R2, RN) approximation of higher-order tensors. SIAM J. Matrix Anal. Appl. 21(4), 1324–1342 (2000)
Comon, P., Luciani, X., de Almeida, A.L.F.: Tensor decompositions, alternating least squares and other tales. J. Chemometr. 23, 393–405 (2009)
Phan, A.H., Cichocki, A., Tichavský, P.: On fast algorithms for orthogonal Tucker decomposition. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), May 2014, pp. 6766–6770 (2014)
Wen, Z., Yin, W.: A feasible method for optimization with orthogonality constraints. Math. Program. 142, 397–434 (2013)
Barzilai, J., Borwein, J.M.: Two-point step size gradient methods. IMA J. Numer. Anal. 8(1), 141–148 (1988)
Sanchez, E., Kowalski, B.: Tensorial resolution: a direct trilinear decomposition. J. Chemometr. 4, 29–45 (1990)
Tichavský, P., Phan, A.H., Koldovský, Z.: Cramér-Rao-induced bounds for CANDECOMP/PARAFAC tensor decomposition. IEEE Trans. Sig. Process. 61(8), 1986–1997 (2013)
Phan, A.H., Tichavský, P., Cichocki, A.: Low complexity damped Gauss-Newton algorithms for CANDECOMP/PARAFAC. SIAM J. Matrix Anal. Appl. 34(1), 126–147 (2013)
Phan, A.H., Tichavský, P., Cichocki, A.: Fast alternating LS algorithms for high order CANDECOMP/PARAFAC tensor factorizations. IEEE Trans. Sig. Process. 61(19), 4834–4846 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Phan, AH., Tichavský, P., Cichocki, A. (2015). Rank Splitting for CANDECOMP/PARAFAC. In: Vincent, E., Yeredor, A., Koldovský, Z., Tichavský, P. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2015. Lecture Notes in Computer Science(), vol 9237. Springer, Cham. https://doi.org/10.1007/978-3-319-22482-4_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-22482-4_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-22481-7
Online ISBN: 978-3-319-22482-4
eBook Packages: Computer ScienceComputer Science (R0)