[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Rank Splitting for CANDECOMP/PARAFAC

  • Conference paper
  • First Online:
Latent Variable Analysis and Signal Separation (LVA/ICA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9237))

Abstract

CANDECOMP/PARAFAC (CP) approximates multiway data by a sum of rank-1 tensors. Our recent study has presented a method to rank-1 tensor deflation, i.e. sequential extraction of rank-1 tensor components. In this paper, we extend the method to block deflation problem. When at least two factor matrices have full column rank, one can extract two rank-1 tensors simultaneously, and rank of the data tensor is reduced by 2. For decomposition of order-3 tensors of size \(R \times R \times R\) and rank-R, the block deflation has a complexity of \({\mathcal {O}}(R^3)\) per iteration which is lower than the cost \({\mathcal {O}}(R^4)\) of the ALS algorithm for the overall CP decomposition.

P. Tichavský—The work of P. Tichavský was supported by The Czech Science Foundation through Project No. 14-13713S.

A. Cichocki—Also affiliated with the EE Dept., Warsaw University of Technology and with Systems Research Institute, Polish Academy of Science, Poland.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Stegeman, A., Comon, P.: Subtracting a best rank-1 approximation may increase tensor rank. Linear Algebra Appl. 433(7), 1276–1300 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  2. Phan, A.H., Tichavský, P., Cichocki, A.: Deflation method for CANDECOMP/PARAFAC tensor decomposition. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), May 2014, pp. 6736–6740 (2014)

    Google Scholar 

  3. Phan, A.H., Tichavský, P., Cichocki, A.: Tensor deflation for CANDECOMP/PARAFAC. Part 1: alternating subspace update algorithm. IEEE Trans. Sig. Process. (2015). (in print)

    Google Scholar 

  4. Cichocki, A., Zdunek, R., Phan, A.H., Amari, S.: Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation. Wiley, Chichester (2009)

    Book  Google Scholar 

  5. De Lathauwer, L., Nion, D.: Decompositions of a higher-order tensor in block terms - part iii: alternating least squares algorithms. SIAM J. Matrix Anal. Appl. 30(3), 1067–1083 (2008). Special issue tensor decompositions and applications

    Google Scholar 

  6. Sorber, L., Van Barel, M., De Lathauwer, L.: Structured data fusion. Technical report, ESAT-SISTA, Internal report 13–177 (2013)

    Google Scholar 

  7. Phan, A.H., Tichavský, P., Cichocki, A.: Tensor deflation for CANDECOMP/PARAFAC. Part 3: rank splitting. arXiv, CoRR, vol. abs/1506.04971 (2015)

    Google Scholar 

  8. De Lathauwer, L., Moor, B.D., Vandewalle, J.: On the best rank-1 and rank-(R1, R2, RN) approximation of higher-order tensors. SIAM J. Matrix Anal. Appl. 21(4), 1324–1342 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Comon, P., Luciani, X., de Almeida, A.L.F.: Tensor decompositions, alternating least squares and other tales. J. Chemometr. 23, 393–405 (2009)

    Article  Google Scholar 

  10. Phan, A.H., Cichocki, A., Tichavský, P.: On fast algorithms for orthogonal Tucker decomposition. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), May 2014, pp. 6766–6770 (2014)

    Google Scholar 

  11. Wen, Z., Yin, W.: A feasible method for optimization with orthogonality constraints. Math. Program. 142, 397–434 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  12. Barzilai, J., Borwein, J.M.: Two-point step size gradient methods. IMA J. Numer. Anal. 8(1), 141–148 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  13. Sanchez, E., Kowalski, B.: Tensorial resolution: a direct trilinear decomposition. J. Chemometr. 4, 29–45 (1990)

    Article  Google Scholar 

  14. Tichavský, P., Phan, A.H., Koldovský, Z.: Cramér-Rao-induced bounds for CANDECOMP/PARAFAC tensor decomposition. IEEE Trans. Sig. Process. 61(8), 1986–1997 (2013)

    Article  Google Scholar 

  15. Phan, A.H., Tichavský, P., Cichocki, A.: Low complexity damped Gauss-Newton algorithms for CANDECOMP/PARAFAC. SIAM J. Matrix Anal. Appl. 34(1), 126–147 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  16. Phan, A.H., Tichavský, P., Cichocki, A.: Fast alternating LS algorithms for high order CANDECOMP/PARAFAC tensor factorizations. IEEE Trans. Sig. Process. 61(19), 4834–4846 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anh-Huy Phan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Phan, AH., Tichavský, P., Cichocki, A. (2015). Rank Splitting for CANDECOMP/PARAFAC. In: Vincent, E., Yeredor, A., Koldovský, Z., Tichavský, P. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2015. Lecture Notes in Computer Science(), vol 9237. Springer, Cham. https://doi.org/10.1007/978-3-319-22482-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22482-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22481-7

  • Online ISBN: 978-3-319-22482-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics