Abstract
Let P be a set of points in the plane and G(P) be the associated geometric graph. Let T be a spanning tree of G(P). The dilation of a pair of points i and j of P in T is the ratio between the length of the path between i and j in T and their Euclidean distance. The dilation of T is the maximum dilation among all pairs of points in P. The minimum dilation spanning tree problem (MDSTP) asks for a tree with minimum dilation. So far, no exact algorithm has been proposed in the literature to compute optimal solutions to the MDSTP. This paper aims at filling this gap. To this end, we developed an algorithm that combines an integer programming model, a geometric preprocessing and an efficient heuristic for the MDSTP. We report on computational tests in which, for the first time, instances of up to 20 points have been solved to proven optimality.
Research supported by grants: CNPq (302804/2010-2, 477692/2012-5, 311140/2014-9, 139107/2012-6), FAPESP (2015/08734-9, 2012/17965-6), and Faepex.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University Press, New York (2007)
Peleg, D., Schäfer, A.A.: Graph spanners. Journal of Graph Theory 13(1), 99–116 (1989)
Cheong, O., Haverkort, H., Lee, M.: Computing a minimum-dilation spanning tree is NP-hard. Comput. Geom. Theory Appl. 41(3), 188–205 (2008)
Aronov, B., de Berg, M., Cheong, O., Gudmundsson, J., Haverkort, H., Smid, M., Vigneron, A.: Sparse geometric graphs with small dilation. Computational Geometry 40(3), 207–219 (2008)
Sigurd, M., Zachariasen, M.: Construction of minimum-weight spanners. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 797–808. Springer, Heidelberg (2004)
Farshi, M., Gudmundsson, J.: Experimental study of geometric \(t\)-spanners. J. Exp. Algorithmics 14, 3:1.3–3:1.39 (2009)
Klein, R., Kutz, M.: Computing geometric minimum-dilation graphs Is NP-hard. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 196–207. Springer, Heidelberg (2007)
Magnanti, T.: Wolsey: Optimal trees. CORE discussion paper. Center for Operations Research and Econometrics (1994)
Resende, M.G.C., Ribeiro, C.C.: Greedy randomized adaptive search procedures: advances, hybridizations, and applications. In: Glover, F., Kochenberger, G.A. (eds.) Handbook of Metaheuristics, vol. 57. International Series in Operations Research and Management Science. second edn., pp. 219–249. Springer (2009)
Prim, R.C.: Shortest connection networks and some generalizations. The Bell Systems Technical Journal 36(6), 1389–1401 (1957)
Ribeiro, C.C., Resende, M.G.C.: Path-relinking intensification methods for stochastic local search algorithms. Computers and Operations Research 37, 498–508 (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Brandt, A.F., de Gaiowski, M.F.A., de Rezende, P.J., de Souza, C.C. (2015). Computing Minimum Dilation Spanning Trees in Geometric Graphs. In: Xu, D., Du, D., Du, D. (eds) Computing and Combinatorics. COCOON 2015. Lecture Notes in Computer Science(), vol 9198. Springer, Cham. https://doi.org/10.1007/978-3-319-21398-9_24
Download citation
DOI: https://doi.org/10.1007/978-3-319-21398-9_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-21397-2
Online ISBN: 978-3-319-21398-9
eBook Packages: Computer ScienceComputer Science (R0)