[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Computing Minimum Dilation Spanning Trees in Geometric Graphs

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9198))

Included in the following conference series:

Abstract

Let P be a set of points in the plane and G(P) be the associated geometric graph. Let T be a spanning tree of G(P). The dilation of a pair of points i and j of P in T is the ratio between the length of the path between i and j in T and their Euclidean distance. The dilation of T is the maximum dilation among all pairs of points in P. The minimum dilation spanning tree problem (MDSTP) asks for a tree with minimum dilation. So far, no exact algorithm has been proposed in the literature to compute optimal solutions to the MDSTP. This paper aims at filling this gap. To this end, we developed an algorithm that combines an integer programming model, a geometric preprocessing and an efficient heuristic for the MDSTP. We report on computational tests in which, for the first time, instances of up to 20 points have been solved to proven optimality.

Research supported by grants: CNPq (302804/2010-2, 477692/2012-5, 311140/2014-9, 139107/2012-6), FAPESP (2015/08734-9, 2012/17965-6), and Faepex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University Press, New York (2007)

    Book  MATH  Google Scholar 

  2. Peleg, D., Schäfer, A.A.: Graph spanners. Journal of Graph Theory 13(1), 99–116 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cheong, O., Haverkort, H., Lee, M.: Computing a minimum-dilation spanning tree is NP-hard. Comput. Geom. Theory Appl. 41(3), 188–205 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Aronov, B., de Berg, M., Cheong, O., Gudmundsson, J., Haverkort, H., Smid, M., Vigneron, A.: Sparse geometric graphs with small dilation. Computational Geometry 40(3), 207–219 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Sigurd, M., Zachariasen, M.: Construction of minimum-weight spanners. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 797–808. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Farshi, M., Gudmundsson, J.: Experimental study of geometric \(t\)-spanners. J. Exp. Algorithmics 14, 3:1.3–3:1.39 (2009)

    Article  MathSciNet  Google Scholar 

  7. Klein, R., Kutz, M.: Computing geometric minimum-dilation graphs Is NP-hard. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 196–207. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Magnanti, T.: Wolsey: Optimal trees. CORE discussion paper. Center for Operations Research and Econometrics (1994)

    Google Scholar 

  9. Resende, M.G.C., Ribeiro, C.C.: Greedy randomized adaptive search procedures: advances, hybridizations, and applications. In: Glover, F., Kochenberger, G.A. (eds.) Handbook of Metaheuristics, vol. 57. International Series in Operations Research and Management Science. second edn., pp. 219–249. Springer (2009)

    Google Scholar 

  10. Prim, R.C.: Shortest connection networks and some generalizations. The Bell Systems Technical Journal 36(6), 1389–1401 (1957)

    Article  Google Scholar 

  11. Ribeiro, C.C., Resende, M.G.C.: Path-relinking intensification methods for stochastic local search algorithms. Computers and Operations Research 37, 498–508 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro J. de Rezende .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Brandt, A.F., de Gaiowski, M.F.A., de Rezende, P.J., de Souza, C.C. (2015). Computing Minimum Dilation Spanning Trees in Geometric Graphs. In: Xu, D., Du, D., Du, D. (eds) Computing and Combinatorics. COCOON 2015. Lecture Notes in Computer Science(), vol 9198. Springer, Cham. https://doi.org/10.1007/978-3-319-21398-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21398-9_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21397-2

  • Online ISBN: 978-3-319-21398-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics