Abstract
Brain storm optimization is a young and promising swarm intelligence algorithm, which simulates the human brainstorming process. The convergent operation and divergent operation are two basic operators of the brain storm optimization. The \(k\) means clustering is utilized in the original brain storm optimization, which needs to define the \(k\) value before the search. To adaptively change the number of clusters during the search, a modified Affinity Propagation (AP) clustering method and an enhanced creating strategy are proposed on account of the structure information of single or multiple clusters. In addition, the modified brain storm optimization is applied to optimize the dynamic deployments of two different wireless sensor networks (WSN). Experimental results show that the proposed algorithm achieves satisfactory results and guarantees a high coverage rate.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chen, J., Xie, Y., Ni, J.: Brain storm optimization model based on uncertainty information. In: 2014 Tenth International Conference on Computational Intelligence and Security, pp. 99–103, November 2014
Cheng, S., Shi, Y., Qin, Q., Gao, S.: Solution clustering analysis in brain storm optimization algorithm. In: Proceedings of The 2013 IEEE Symposium on Swarm Intelligence, (SIS 2013), pp. 111–118. IEEE, Singapore (2013)
Cheng, S., Shi, Y., Qin, Q., Ting, T.O., Bai, R.: Maintaining population diversity in brain storm optimization algorithm. In: Proceedings of 2014 IEEE Congress on Evolutionary Computation, (CEC 2014), pp. 3230–3237. IEEE, Beijing (2014)
Cheng, S., Shi, Y., Qin, Q., Zhang, Q., Bai, R.: Population diversity maintenance in brain storm optimization algorithm. Journal of Artificial Intelligence and Soft Computing Research (JAISCR) 4(2), 83–97 (2014)
Duan, H., Li, S., Shi, Y.: Predator-prey brain storm optimization for dc brushless motor. IEEE Transactions on Magnetics 49(10), 5336–5340 (2013)
Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315, 972–976 (2014)
Shi, Y.: Brain storm optimization algorithm. In: Tan, Y., Shi, Y., Chai, Y., Wang, G. (eds.) ICSI 2011, Part I. LNCS, vol. 6728, pp. 303–309. Springer, Heidelberg (2011)
Shi, Y.: An optimization algorithm based on brainstorming process. International Journal of Swarm Intelligence Research (IJSIR) 2(4), 35–62 (2011)
Shi, Y.: Developmental swarm intelligence: Developmental learning perspective of swarm intelligence algorithms. International Journal of Swarm Intelligence Research (IJSIR) 51(1), 36–54 (2014)
Xue, J., Wu, Y., Shi, Y., Cheng, S.: Brain storm optimization algorithm for multi-objective optimization problems. In: Tan, Y., Shi, Y., Ji, Z. (eds.) ICSI 2012, Part I. LNCS, vol. 7331, pp. 513–519. Springer, Heidelberg (2012)
Yang, Y., Shi, Y., Xia, S.: Discussion mechanism based brain storm optimization algorithm. Journal of Zhejiang University (Engineering Science) 47(10), 1705–1711 (2013)
Zhan, Z.H., Chen, W.N., Lin, Y., Gong, Y.J., long Li, Y., Zhang, J.: Parameter investigation in brain storm optimization. In: 2013 IEEE Symposium on Swarm Intelligence (SIS), pp. 103–110, April 2013
Zhan, Z.h., Zhang, J., Shi, Y.h., Liu, H.l.: A modified brain storm optimization. In: 2012 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8, June 2012
Zhou, D., Shi, Y., Cheng, S.: Brain storm optimization algorithm with modified step-size and individual generation. In: Tan, Y., Shi, Y., Ji, Z. (eds.) ICSI 2012, Part I. LNCS, vol. 7331, pp. 243–252. Springer, Heidelberg (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Chen, J., Cheng, S., Chen, Y., Xie, Y., Shi, Y. (2015). Enhanced Brain Storm Optimization Algorithm for Wireless Sensor Networks Deployment. In: Tan, Y., Shi, Y., Buarque, F., Gelbukh, A., Das, S., Engelbrecht, A. (eds) Advances in Swarm and Computational Intelligence. ICSI 2015. Lecture Notes in Computer Science(), vol 9140. Springer, Cham. https://doi.org/10.1007/978-3-319-20466-6_40
Download citation
DOI: https://doi.org/10.1007/978-3-319-20466-6_40
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-20465-9
Online ISBN: 978-3-319-20466-6
eBook Packages: Computer ScienceComputer Science (R0)