[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Enhanced Brain Storm Optimization Algorithm for Wireless Sensor Networks Deployment

  • Conference paper
  • First Online:
Advances in Swarm and Computational Intelligence (ICSI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9140))

Included in the following conference series:

Abstract

Brain storm optimization is a young and promising swarm intelligence algorithm, which simulates the human brainstorming process. The convergent operation and divergent operation are two basic operators of the brain storm optimization. The \(k\) means clustering is utilized in the original brain storm optimization, which needs to define the \(k\) value before the search. To adaptively change the number of clusters during the search, a modified Affinity Propagation (AP) clustering method and an enhanced creating strategy are proposed on account of the structure information of single or multiple clusters. In addition, the modified brain storm optimization is applied to optimize the dynamic deployments of two different wireless sensor networks (WSN). Experimental results show that the proposed algorithm achieves satisfactory results and guarantees a high coverage rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chen, J., Xie, Y., Ni, J.: Brain storm optimization model based on uncertainty information. In: 2014 Tenth International Conference on Computational Intelligence and Security, pp. 99–103, November 2014

    Google Scholar 

  2. Cheng, S., Shi, Y., Qin, Q., Gao, S.: Solution clustering analysis in brain storm optimization algorithm. In: Proceedings of The 2013 IEEE Symposium on Swarm Intelligence, (SIS 2013), pp. 111–118. IEEE, Singapore (2013)

    Google Scholar 

  3. Cheng, S., Shi, Y., Qin, Q., Ting, T.O., Bai, R.: Maintaining population diversity in brain storm optimization algorithm. In: Proceedings of 2014 IEEE Congress on Evolutionary Computation, (CEC 2014), pp. 3230–3237. IEEE, Beijing (2014)

    Google Scholar 

  4. Cheng, S., Shi, Y., Qin, Q., Zhang, Q., Bai, R.: Population diversity maintenance in brain storm optimization algorithm. Journal of Artificial Intelligence and Soft Computing Research (JAISCR) 4(2), 83–97 (2014)

    Google Scholar 

  5. Duan, H., Li, S., Shi, Y.: Predator-prey brain storm optimization for dc brushless motor. IEEE Transactions on Magnetics 49(10), 5336–5340 (2013)

    Article  Google Scholar 

  6. Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315, 972–976 (2014)

    Article  MathSciNet  Google Scholar 

  7. Shi, Y.: Brain storm optimization algorithm. In: Tan, Y., Shi, Y., Chai, Y., Wang, G. (eds.) ICSI 2011, Part I. LNCS, vol. 6728, pp. 303–309. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Shi, Y.: An optimization algorithm based on brainstorming process. International Journal of Swarm Intelligence Research (IJSIR) 2(4), 35–62 (2011)

    Article  Google Scholar 

  9. Shi, Y.: Developmental swarm intelligence: Developmental learning perspective of swarm intelligence algorithms. International Journal of Swarm Intelligence Research (IJSIR) 51(1), 36–54 (2014)

    Article  Google Scholar 

  10. Xue, J., Wu, Y., Shi, Y., Cheng, S.: Brain storm optimization algorithm for multi-objective optimization problems. In: Tan, Y., Shi, Y., Ji, Z. (eds.) ICSI 2012, Part I. LNCS, vol. 7331, pp. 513–519. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Yang, Y., Shi, Y., Xia, S.: Discussion mechanism based brain storm optimization algorithm. Journal of Zhejiang University (Engineering Science) 47(10), 1705–1711 (2013)

    Google Scholar 

  12. Zhan, Z.H., Chen, W.N., Lin, Y., Gong, Y.J., long Li, Y., Zhang, J.: Parameter investigation in brain storm optimization. In: 2013 IEEE Symposium on Swarm Intelligence (SIS), pp. 103–110, April 2013

    Google Scholar 

  13. Zhan, Z.h., Zhang, J., Shi, Y.h., Liu, H.l.: A modified brain storm optimization. In: 2012 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8, June 2012

    Google Scholar 

  14. Zhou, D., Shi, Y., Cheng, S.: Brain storm optimization algorithm with modified step-size and individual generation. In: Tan, Y., Shi, Y., Ji, Z. (eds.) ICSI 2012, Part I. LNCS, vol. 7331, pp. 243–252. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junfeng Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Chen, J., Cheng, S., Chen, Y., Xie, Y., Shi, Y. (2015). Enhanced Brain Storm Optimization Algorithm for Wireless Sensor Networks Deployment. In: Tan, Y., Shi, Y., Buarque, F., Gelbukh, A., Das, S., Engelbrecht, A. (eds) Advances in Swarm and Computational Intelligence. ICSI 2015. Lecture Notes in Computer Science(), vol 9140. Springer, Cham. https://doi.org/10.1007/978-3-319-20466-6_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20466-6_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20465-9

  • Online ISBN: 978-3-319-20466-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics