[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Random Grouping Brain Storm Optimization Algorithm with a New Dynamically Changing Step Size

  • Conference paper
  • First Online:
Advances in Swarm and Computational Intelligence (ICSI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9140))

Included in the following conference series:

Abstract

Finding the global optima of a complex real-world problem has become much more challenging task for evolutionary computation and swarm intelligence. Brain storm optimization (BSO) is a swarm intelligence algorithm inspired by human being’s behavior of brainstorming for solving global optimization problems. In this paper, we propose a Random Grouping BSO algorithm termed RGBSO by improving the creating operation of the original BSO. To reduce the load of parameter settings and balance exploration and exploitation at different searching generations, the proposed RGBSO adopts a new dynamic step-size parameter control strategy in the idea generation step. Moreover, to decrease the time complexity of the original BSO algorithm, the improved RGBSO replaces the clustering method with a random grouping strategy. To examine the effectiveness of the proposed algorithm, it is tested on 14 benchmark functions of CEC2005. Experimental results show that RGBSO is an effective method to optimize complex shifted and rotated functions, and performs significantly better than the original BSO algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Suganthan, P.N., Hansen, N.J, Liang, J.J. et al.: Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization, Nanyang Technological University, Singapore, Technical Report (2005)

    Google Scholar 

  2. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Network, pp. 1942–1948 (1995)

    Google Scholar 

  3. Shi, Y.H., Eberhart, R.C.: A modified particle swarm optimizer. In: IEEE International Conference on Evolutionary Computation, Anchorage, Alaska, USA (1998)

    Google Scholar 

  4. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, Cybernetics B 26(2), 29–41 (1996)

    Article  Google Scholar 

  5. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. Journal of Global Optimization 39(3), 459–471 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Yang, X.: Nature-inspired metaheuristic algorithms, Beckington. Luniver Press, UK (2008)

    Google Scholar 

  7. Passino, K.M.: Bacterial foraging optimization. International Journal of Swarm Intelligence Research 1(1), 1–16 (2010)

    Article  Google Scholar 

  8. Jiang, Q.Y., Wang, L., Hei, X.H. et al.: Optimal approximation of stable linear systems with a novel and efficient optimization algorithm. In: IEEE Congress on Evolutionary Computation, pp. 840–844 (2014)

    Google Scholar 

  9. Shi, Y.: Brain storm optimization algorithm. In: Tan, Y., Shi, Y., Chai, Y., Wang, G. (eds.) ICSI 2011, Part I. LNCS, vol. 6728, pp. 303–309. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  10. Shi, Y.H.: An optimization algorithm based on brainstorming process. International Journal of Swarm Intelligence Research 2(4), 35–62 (2011)

    Article  Google Scholar 

  11. Sun, C.H., Duan, H.B., Shi, Y.H.: Optimal satellite formation reconfiguration based on closed-loop brain storm optimization. IEEE Computational Intelligence Magazine 8(4), 39–51 (2013)

    Article  Google Scholar 

  12. Duan, H.B., Li, S.T., Shi, Y.H.: Predator-prey based brain storm optimization for DC brushless motor. IEEE Transactions on Magnetics 49(10), 5336–5340 (2013)

    Article  Google Scholar 

  13. Jadhav, H.T., Sharma, U., Patel, J., et al.: Brain storm optimization algorithm based economic dispatch considering wind power. In: IEEE International Conference on Power and Energy, pp. 588–593 (2012)

    Google Scholar 

  14. Shi, Y.H.: Multi-objective optimization based on brain storm optimization algorithm. International Journal of Swarm Intelligence Research 4(3), 1–21 (2013)

    Article  Google Scholar 

  15. Xue, J.Q., Wu, Y.L., Shi, Y.H., Cheng, S.: Brain storm optimization algorithm for multi-objective optimization problems. In: The Third International Conference on Swarm Intelligence, pp. 513–519 (2012)

    Google Scholar 

  16. Liang, J., Qin, A.K., Suganthan, P.N., Baskar, S.: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Transactions on Evolutionary Computation 10(3), 281–295 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zijian Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Cao, Z., Shi, Y., Rong, X., Liu, B., Du, Z., Yang, B. (2015). Random Grouping Brain Storm Optimization Algorithm with a New Dynamically Changing Step Size. In: Tan, Y., Shi, Y., Buarque, F., Gelbukh, A., Das, S., Engelbrecht, A. (eds) Advances in Swarm and Computational Intelligence. ICSI 2015. Lecture Notes in Computer Science(), vol 9140. Springer, Cham. https://doi.org/10.1007/978-3-319-20466-6_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20466-6_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20465-9

  • Online ISBN: 978-3-319-20466-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics