[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Fluid-Structure Interaction Model of Human Mitral Valve within Left Ventricle

  • Conference paper
  • First Online:
Functional Imaging and Modeling of the Heart (FIMH 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9126))

Abstract

We present an integrated model of mitral valve coupled with the left ventricle. The model is derived from clinical images and takes into account of the important valvular features, left ventricle contraction, nonlinear soft tissue mechanics, fluid structure interaction, and the MV-LV interaction. This model is compared with a corresponding mitral-tube model, and differences in the results are discussed. Although the model is a step closer towards simulating physiological realistic situation, further work is required to ensure that the highly complex valvular-ventricular interaction, and the fluid-structure interaction, can be reliably represented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. 1.

    https://ibamr.googlecode.com.

References

  1. Chandran, K.B., Kim, H.: Computational mitral valve evaluation and potential clinical applications. Ann. Biomed. Eng. 1–15 (2014). doi:10.1007/s10439-014-1094-5

  2. Conti, C.A., Stevanella, M., Maffessanti, F., Trunfio, S., Votta, E., Roghi, A., Parodi, O., Caiani, E.G., Redaelli, A.: Mitral valve modelling in ischemic patients: finite element analysis from cardiac magnetic resonance imaging. In: Computing in Cardiology, pp. 1059–1062. IEEE (2010)

    Google Scholar 

  3. Einstein, D.R., Kunzelman, K.S., Reinhall, P.G., Nicosia, M.A., Cochran, R.P.: Non-linear fluid-coupled computational model of the mitral valve. J. Hear. Valve Dis. 14(3), 376–385 (2005)

    Google Scholar 

  4. Einstein, D.R., Reinhall, P., Nicosia, M., Cochran, R.P., Kunzelman, K.: Dynamic finite element implementation of nonlinear, anisotropic hyperelastic biological membranes. Comput. Meth. Biomech. Biomed. Eng. 6(1), 33–44 (2003)

    Article  Google Scholar 

  5. Gao, H., Carrick, D., Berry, C., Griffith, B.E., Luo, X.: Dynamic finite-strain modelling of the human left ventricle in health and disease using an immersed boundary-finite element method. IMA J. Appl. Math. 79, 978–1010 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gao, H., Ma, X., Qi, N., Berry, C., Griffith, B.E., Luo, X.: A finite strain nonlinear human mitral valve model with fluid-structure interaction. Int. J. Numer. Meth. Biomed. Eng. 30(12), 1597–1613 (2014)

    Article  Google Scholar 

  7. Griffith, B.E.: Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions. Int. J. Numer. Meth. Biomed. Eng. 28(3), 317–345 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Griffith, B.E., Luo, X.: Hybrid finite difference/finite element version of the immersed boundary method (2012). Submitted, preprint available from http://www.cims.nyu.edu/griffith

  9. Kamensky, D., Hsu, M.C., Schillinger, D., Evans, J.A., Aggarwal, A., Bazilevs, Y., Sacks, M.S., Hughes, T.J.: An immersogeometric variational framework for fluid-structure interaction: Application to bioprosthetic heart valves. Comput. Meth. Appl. Mech. Eng. 284, 1005–1053 (2014)

    Article  MathSciNet  Google Scholar 

  10. Kunzelman, K.S., Cochran, R.: Stress/strain characteristics of porcine mitral valve tissue: parallel versus perpendicular collagen orientation. J. Card. Surg. 7(1), 71–78 (1992)

    Article  Google Scholar 

  11. Kunzelman, K.S., Einstein, D.R., Cochran, R.P.: Fluid-structure interaction models of the mitral valve: function in normal and pathological states. Philos. Trans. Royal Soc. B: Biol. Sci. 362(1484), 1393–1406 (2007)

    Article  Google Scholar 

  12. Lau, K., Diaz, V., Scambler, P., Burriesci, G.: Mitral valve dynamics in structural and fluid-structure interaction models. Med. Eng. Phys. 32(9), 1057–1064 (2010)

    Article  Google Scholar 

  13. Ma, X., Gao, H., Griffith, B.E., Berry, C., Luo, X.: Image-based fluid-structure interaction model of the human mitral valve. Comput. Fluids 71, 417–425 (2013)

    Article  MathSciNet  Google Scholar 

  14. Nishimura, R.A., Tajik, A.J.: Evaluation of diastolic filling of left ventricle in health and disease: Doppler echocardiography is the clinician’s Rosetta Stone. J. Am. Coll. Cardiol. 30(1), 8–18 (1997)

    Article  Google Scholar 

  15. Ray, R., Chambers, J.: Mitral valve disease. Int. J. Clin. Prac. 68(10), 1216–1220 (2014)

    Article  Google Scholar 

  16. Sun, W., Abad, A., Sacks, M.S.: Simulated bioprosthetic heart valve deformation under quasi-static loading. J. Biomech. Eng. 127(6), 905–914 (2005)

    Article  Google Scholar 

  17. Wang, Q., Sun, W.: Finite element modeling of mitral valve dynamic deformation using patient-specific multi-slices computed tomography scans. Ann. Biomed. Eng. 41(1), 142–153 (2013)

    Article  Google Scholar 

  18. Watton, P.N., Luo, X.Y., Yin, M., Bernacca, G.M., Wheatley, D.J.: Effect of ventricle motion on the dynamic behaviour of chorded mitral valves. J. Fluids Struct. 24(1), 58–74 (2008)

    Article  Google Scholar 

  19. Yin, M., Luo, X., Wang, T., Watton, P.: Effects of flow vortex on a chorded mitral valve in the left ventricle. Int. J. Numer. Meth. Biomed. Eng. 26(3–4), 381–404 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgement

This work is funded by the UK EPSRC (EP/I1029990), and the British Heart Foundation (PG/14/64/31043, PG/11/2/28474). B.E.G. acknowledges research support from the American Heart Association (AHA award 10 SDG4320049), the National Institutes of Health (award HL117063), and the National Science Foundation (awards DMS 1016554 and ACI 1047734).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Gao, H., Qi, N., Ma, X., Griffith, B.E., Berry, C., Luo, X. (2015). Fluid-Structure Interaction Model of Human Mitral Valve within Left Ventricle. In: van Assen, H., Bovendeerd, P., Delhaas, T. (eds) Functional Imaging and Modeling of the Heart. FIMH 2015. Lecture Notes in Computer Science(), vol 9126. Springer, Cham. https://doi.org/10.1007/978-3-319-20309-6_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20309-6_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20308-9

  • Online ISBN: 978-3-319-20309-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics