Abstract
We present an integrated model of mitral valve coupled with the left ventricle. The model is derived from clinical images and takes into account of the important valvular features, left ventricle contraction, nonlinear soft tissue mechanics, fluid structure interaction, and the MV-LV interaction. This model is compared with a corresponding mitral-tube model, and differences in the results are discussed. Although the model is a step closer towards simulating physiological realistic situation, further work is required to ensure that the highly complex valvular-ventricular interaction, and the fluid-structure interaction, can be reliably represented.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
Notes
References
Chandran, K.B., Kim, H.: Computational mitral valve evaluation and potential clinical applications. Ann. Biomed. Eng. 1–15 (2014). doi:10.1007/s10439-014-1094-5
Conti, C.A., Stevanella, M., Maffessanti, F., Trunfio, S., Votta, E., Roghi, A., Parodi, O., Caiani, E.G., Redaelli, A.: Mitral valve modelling in ischemic patients: finite element analysis from cardiac magnetic resonance imaging. In: Computing in Cardiology, pp. 1059–1062. IEEE (2010)
Einstein, D.R., Kunzelman, K.S., Reinhall, P.G., Nicosia, M.A., Cochran, R.P.: Non-linear fluid-coupled computational model of the mitral valve. J. Hear. Valve Dis. 14(3), 376–385 (2005)
Einstein, D.R., Reinhall, P., Nicosia, M., Cochran, R.P., Kunzelman, K.: Dynamic finite element implementation of nonlinear, anisotropic hyperelastic biological membranes. Comput. Meth. Biomech. Biomed. Eng. 6(1), 33–44 (2003)
Gao, H., Carrick, D., Berry, C., Griffith, B.E., Luo, X.: Dynamic finite-strain modelling of the human left ventricle in health and disease using an immersed boundary-finite element method. IMA J. Appl. Math. 79, 978–1010 (2014)
Gao, H., Ma, X., Qi, N., Berry, C., Griffith, B.E., Luo, X.: A finite strain nonlinear human mitral valve model with fluid-structure interaction. Int. J. Numer. Meth. Biomed. Eng. 30(12), 1597–1613 (2014)
Griffith, B.E.: Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions. Int. J. Numer. Meth. Biomed. Eng. 28(3), 317–345 (2012)
Griffith, B.E., Luo, X.: Hybrid finite difference/finite element version of the immersed boundary method (2012). Submitted, preprint available from http://www.cims.nyu.edu/griffith
Kamensky, D., Hsu, M.C., Schillinger, D., Evans, J.A., Aggarwal, A., Bazilevs, Y., Sacks, M.S., Hughes, T.J.: An immersogeometric variational framework for fluid-structure interaction: Application to bioprosthetic heart valves. Comput. Meth. Appl. Mech. Eng. 284, 1005–1053 (2014)
Kunzelman, K.S., Cochran, R.: Stress/strain characteristics of porcine mitral valve tissue: parallel versus perpendicular collagen orientation. J. Card. Surg. 7(1), 71–78 (1992)
Kunzelman, K.S., Einstein, D.R., Cochran, R.P.: Fluid-structure interaction models of the mitral valve: function in normal and pathological states. Philos. Trans. Royal Soc. B: Biol. Sci. 362(1484), 1393–1406 (2007)
Lau, K., Diaz, V., Scambler, P., Burriesci, G.: Mitral valve dynamics in structural and fluid-structure interaction models. Med. Eng. Phys. 32(9), 1057–1064 (2010)
Ma, X., Gao, H., Griffith, B.E., Berry, C., Luo, X.: Image-based fluid-structure interaction model of the human mitral valve. Comput. Fluids 71, 417–425 (2013)
Nishimura, R.A., Tajik, A.J.: Evaluation of diastolic filling of left ventricle in health and disease: Doppler echocardiography is the clinician’s Rosetta Stone. J. Am. Coll. Cardiol. 30(1), 8–18 (1997)
Ray, R., Chambers, J.: Mitral valve disease. Int. J. Clin. Prac. 68(10), 1216–1220 (2014)
Sun, W., Abad, A., Sacks, M.S.: Simulated bioprosthetic heart valve deformation under quasi-static loading. J. Biomech. Eng. 127(6), 905–914 (2005)
Wang, Q., Sun, W.: Finite element modeling of mitral valve dynamic deformation using patient-specific multi-slices computed tomography scans. Ann. Biomed. Eng. 41(1), 142–153 (2013)
Watton, P.N., Luo, X.Y., Yin, M., Bernacca, G.M., Wheatley, D.J.: Effect of ventricle motion on the dynamic behaviour of chorded mitral valves. J. Fluids Struct. 24(1), 58–74 (2008)
Yin, M., Luo, X., Wang, T., Watton, P.: Effects of flow vortex on a chorded mitral valve in the left ventricle. Int. J. Numer. Meth. Biomed. Eng. 26(3–4), 381–404 (2010)
Acknowledgement
This work is funded by the UK EPSRC (EP/I1029990), and the British Heart Foundation (PG/14/64/31043, PG/11/2/28474). B.E.G. acknowledges research support from the American Heart Association (AHA award 10 SDG4320049), the National Institutes of Health (award HL117063), and the National Science Foundation (awards DMS 1016554 and ACI 1047734).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Gao, H., Qi, N., Ma, X., Griffith, B.E., Berry, C., Luo, X. (2015). Fluid-Structure Interaction Model of Human Mitral Valve within Left Ventricle. In: van Assen, H., Bovendeerd, P., Delhaas, T. (eds) Functional Imaging and Modeling of the Heart. FIMH 2015. Lecture Notes in Computer Science(), vol 9126. Springer, Cham. https://doi.org/10.1007/978-3-319-20309-6_38
Download citation
DOI: https://doi.org/10.1007/978-3-319-20309-6_38
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-20308-9
Online ISBN: 978-3-319-20309-6
eBook Packages: Computer ScienceComputer Science (R0)