[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

An Experimental Study on Combining Binarization Techniques and Ensemble Methods of Decision Trees

  • Conference paper
  • First Online:
Multiple Classifier Systems (MCS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9132))

Included in the following conference series:

  • 1086 Accesses

Abstract

Binarization techniques deal with multiclass classification problem combining several binary classifiers. They were originally introduced for dealing with multiclass problems with methods that were only able to deal with two classes (e.g., SVM). Nevertheless, it has been shown that they can also be useful with classification methods able to deal directly with multiclass problems (e.g., decision trees), because they can improve the results. This work studies if this improvement is also possible when using ensembles of decision trees (e.g., Random Forest, Boosting) over 67 multiclass datasets. It was found that some combinations of a binarization technique and an ensemble method improve the results of the ensemble method without binarization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 31.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 39.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Available from http://persoal.citius.usc.es/manuel.fernandez.delgado/papers/jmlr/.

References

  1. Angulo, C., Parra, X., Catala, A.: K-SVCR: a support vector machine for multi-class classification. Neurocomputing 55(1), 57–77 (2003)

    Article  Google Scholar 

  2. Bache, K., Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/ml

  3. Bagheri, M.A., Gao, Q., Escalera, S.: A framework towards the unification of ensemble classification methods. In: 2013 12th International Conference on Machine Learning and Applications (ICMLA), vol. 2, pp. 351–355. IEEE, December 2013

    Google Scholar 

  4. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)

    MATH  MathSciNet  Google Scholar 

  5. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  6. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MATH  MathSciNet  Google Scholar 

  7. Dietterich, T.G.: Approximate statistical test for comparing supervised classification learning algorithms. Neural Comput. 10(7), 1895–1923 (1998)

    Article  Google Scholar 

  8. Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via error-correcting output codes. J. Artif. Intell. Res. 2, 263–286 (1995)

    MATH  Google Scholar 

  9. Elomaa, T., Kääriäinen, M.: An analysis of reduced error pruning. J. Artif. Intell. Res. 15, 163–187 (2001)

    MATH  Google Scholar 

  10. Escalera, S., Pujol, O., Radeva, P.: On the decoding process in ternary error-correcting output codes. IEEE Trans. Pattern Anal. Mach. Intell. 32(1), 120–134 (2010)

    Article  Google Scholar 

  11. Fernández, A., López, V., Galar, M., del Jesus, M.J., Herrera, F.: Analysing the classification of imbalanced data-sets with multiple classes: binarization techniques and ad-hoc approaches. Knowl.-Based Syst. 42, 97–110 (2013)

    Article  Google Scholar 

  12. Fernández-Delgado, M., Cernadas, E., Barro, S., Amorim, D.: Do we need hundreds of classifiers to solve real world classification problems? J. Mach. Learn. Res. 15, 3133–3181 (2014)

    MATH  MathSciNet  Google Scholar 

  13. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: 13th International Conference on Machine Learning, pp. 148–156. Morgan Kaufmann, San Francisco (1996)

    Google Scholar 

  14. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical view of boosting. Ann. Stat. 95(2), 337–407 (2000)

    Article  MathSciNet  Google Scholar 

  16. Fürnkranz, J.: Round robin ensembles. Intell. Data Anal. 7(5), 385–403 (2003)

    Google Scholar 

  17. Galar, M., Fernández, A., Barrenechea, E., Bustince, H., Herrera, F.: An overview of ensemble methods for binary classifiers in multi-class problems: experimental study on one-vs-one and one-vs-all schemes. Pattern Recogn. 44(8), 1761–1776 (2011)

    Article  Google Scholar 

  18. Galar, M., Fernández, A., Barrenechea, E., Herrera, F.: DRCW-OVO: distance-based relative competence weighting combination for one-vs-one strategy in multi-class problems. Pattern Recogn. 48, 28–42 (2014)

    Article  Google Scholar 

  19. Garcia-Pedrajas, N., Ortiz-Boyer, D.: Improving multiclass pattern recognition by the combination of two strategies. IEEE Trans. Pattern Anal. Mach. Intell. 28(6), 1001–1006 (2006)

    Article  Google Scholar 

  20. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. 11(1), 10–18 (2009)

    Article  Google Scholar 

  21. Ho, T.K.: The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 832–844 (1998)

    Article  Google Scholar 

  22. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo (1993). Machine Learning

    Google Scholar 

  23. Rifkin, R., Klautau, A.: In defense of one-vs-all classification. J. Mach. Learn. Res. 5, 101–141 (2004)

    MATH  MathSciNet  Google Scholar 

  24. Rodríguez, J.J., Kuncheva, L.I., Alonso, C.J.: Rotation forest: a new classifier ensemble method. IEEE Trans. Pattern Anal. Mach. Intell. 28(10), 1619–1630 (2006)

    Article  Google Scholar 

  25. Sesmero, M.P., Alonso-Weber, J.M., Gutierrez, G., Ledezma, A., Sanchis, A.: An ensemble approach of dual base learners for multi-class classification problems. Inf. Fusion 24, 122–136 (2015)

    Article  Google Scholar 

  26. Wang, S., Yao, X.: Multiclass imbalance problems: analysis and potential solutions. IEEE Trans. Syst. Man Cybern. Part B. Cybern. 42(4), 1119–1130 (2012)

    Article  Google Scholar 

  27. Webb, G.I.: Multiboosting: a technique for combining boosting and wagging. Mach. Learn. 40(2), 159–196 (2000)

    Article  Google Scholar 

  28. Windeatt, T., Ghaderi, R.: Coding and decoding strategies for multi-class learning problems. Inf. Fusion 4(1), 11–21 (2003)

    Article  Google Scholar 

  29. Zhou, Z.-H.: Ensemble Methods: Foundations and Algorithms. CRC Press, Boca Raton (2012)

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by the project TIN2011-24046 of the Spanish Ministry of Economy and Competitiveness.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan J. Rodríguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Rodríguez, J.J., Díez-Pastor, J.F., Arnaiz-González, Á., García-Osorio, C. (2015). An Experimental Study on Combining Binarization Techniques and Ensemble Methods of Decision Trees. In: Schwenker, F., Roli, F., Kittler, J. (eds) Multiple Classifier Systems. MCS 2015. Lecture Notes in Computer Science(), vol 9132. Springer, Cham. https://doi.org/10.1007/978-3-319-20248-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20248-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20247-1

  • Online ISBN: 978-3-319-20248-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics