Abstract
Particle tracing in fully resolved turbulent vector fields is challenging due to their extreme resolution. Since particles can move along arbitrary paths through large parts of the domain, particle integration requires access to the entire field in an unpredictable order. Thus, techniques for particle tracing in such fields require a careful design to reduce performance constraints caused by memory and communication bandwidth. One possibility to achieve this is data compression, but so far it has been considered rather hesitantly due to supposed accuracy issues. We shed light on the use of data compression for turbulent vector fields, motivated by the observation that particle traces are always afflicted with inaccuracy. We quantitatively analyze the additional inaccuracies caused by lossy compression. We propose an adaptive data compression scheme using the discrete wavelet transform and integrate it into a block-based particle tracing approach. Furthermore, we present a priority-based GPU caching scheme to reduce memory access operations. In some experiments we confirm that the compression has only minor impact on the accuracy of the trajectories, and that on a desktop system our technique can achieve comparable performance to previous approaches on supercomputers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Treib, M., Bürger, K., Reichl, F., Meneveau, C., Szalay, A., Westermann, R.: Turbulence visualization at the terascale on desktop PCs. IEEE Trans. Vis. Comput. Graphics 18, 2169–2177 (2012)
Li, Y., Perlman, E., Wan, M., Yang, Y., Meneveau, C., Burns, R., Chen, S., Szalay, A., Eyink, G.: A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence. J. Turbul. 9, N31 (2008)
Post, F.H., Vrolijk, B., Hauser, H., Laramee, R.S., Doleisch, H.: The state of the art in flow visualisation: feature extraction and tracking. Comput. Graph. Forum 22, 775–792 (2003)
Laramee, R.S., Hauser, H., Doleisch, H., Vrolijk, B., Post, F.H., Weiskopf, D.: The state of the art in flow visualization: dense and texture-based techniques. Comput. Graph. Forum 23, 203–221 (2004)
McLoughlin, T., Laramee, R.S., Peikert, R., Post, F.H., Chen, M.: Over two decades of integration-based, geometric flow visualization. Comput. Graph. Forum 29, 1807–1829 (2010)
Teitzel, C., Grosso, R., Ertl, T.: Efficient and reliable integration methods for particle tracing in unsteady flows on discrete meshes. In: Lefer, W., Grave, M. (eds.) Visualization in Scientific Computing 1997. Eurographics, pp. 31–41. Springer, Vienna (1997)
Yeung, P.K., Pope, S.B.: An algorithm for tracking fluid particles in numerical simulations of homogeneous turbulence. J. Comput. Phys. 79, 373–416 (1988)
Balachandar, S., Maxey, M.R.: Methods for evaluating fluid velocities in spectral simulations of turbulence. J. Comput. Phys. 83, 96–125 (1989)
Rovelstad, A.L., Handler, R.A., Bernard, P.S.: The effect of interpolation errors on the Lagrangian analysis of simulated turbulent channel flow. J. Comput. Phys. 110, 190–195 (1994)
Schirski, M., Gerndt, A., van Reimersdahl, T., Kuhlen, T., Adomeit, P., Lang, O., Pischinger, S., Bischof, C.H.: ViSTA FlowLib: a framework for interactive visualization and exploration of unsteady flows in virtual environments. In: 9th Eurographics Workshop on Virtual Enviroments, pp. 77–86 (2003)
Krüger, J., Kipfer, P., Kondratieva, P., Westermann, R.: A particle system for interactive visualization of 3D flows. IEEE Trans. Vis. Comput. Graph. 11, 744–756 (2005)
Schirski, M., Bischof, C., Kuhlen, T.: Interactive particle tracing on tetrahedral grids using the GPU. In: Proceedings of Vision, Modeling, and Visualization (VMV), pp. 153–160 (2006)
Bürger, K., Schneider, J., Kondratieva, P., Krüger, J., Westermann, R.: Interactive visual exploration of unsteady 3D flows. In: Eurographics/IEEE VGTC Visualization (EuroVis) (2007)
Murray, L.: GPU acceleration of Runge-Kutta integrators. IEEE Trans. Parallel Distrib. Syst. 23, 94–101 (2011)
Sayood, K.: Introduction to Data Compression, 3rd edn. Morgan Kaufmann Publishers Inc., San Francisco (2005)
Rodriguez, M.B., Gobbetti, E., Guitián, J.I., Makhinya, M., Marton, F., Pajarola, R., Suter, S.: A survey of compressed GPU-based direct volume rendering. In: Eurographics 2013 - STARs, pp. 117–136 (2013)
Treib, M., Reichl, F., Auer, S., Westermann, R.: Interactive editing of gigasample terrain fields. Comput. Graph. Forum 31, 383–392 (2012)
Lane, D.A.: UFAT–a particle tracer for time-dependent flow fields. In: IEEE Visualization, pp. 257–264 (1994)
Bruckschen, R., Kuester, F., Hamann, B., Joy, K.I.: Real-time out-of-core visualization of particle traces. In: Proceedings of IEEE 2001 Symposium on Parallel and Large-Data Visualization and Graphics, pp. 45–50 (2001)
Ellsworth, D., Green, B., Moran, P.: Interactive terascale particle visualization. In: IEEE Visualization, pp. 353–360 (2004)
Pugmire, D., Childs, H., Garth, C., Ahern, S., Weber, G.H.: Scalable computation of streamlines on very large datasets. In: Proceedings of the Conference on High Performance Computing, Networking, Storage and Analysis, pp. 16: 1–16: 12 (2009)
Camp, D., Garth, C., Childs, H., Pugmire, D., Joy, K.: Streamline integration using MPI-hybrid parallelism on a large multicore architecture. IEEE Trans. Vis. Comput. Graph. 17, 1702–1713 (2011)
Nouanesengsy, B., Lee, T.Y., Shen, H.W.: Load-balanced parallel streamline generation on large scale vector fields. IEEE Trans. Vis. Comput. Graph. 17, 1785–1794 (2011)
Peterka, T., Ross, R., Nouanesengsy, B., Lee, T.Y., Shen, H.W., Kendall, W., Huang, J.: A study of parallel particle tracing for steady-state and time-varying flow fields. In: Parallel Distributed Processing Symposium (IPDPS), pp. 580–591 (2011)
Yu, H., Wang, C., Ma, K.L.: Parallel hierarchical visualization of large time-varying 3D vector fields. In: Proceedings of ACM/IEEE Conference on Supercomputing, pp. 24:1–24:12 (2007)
Isenburg, M., Lindstrom, P., Snoeyink, J.: Lossless compression of predicted floating-point geometry. Comput. Aided Des. 37, 869–877 (2005)
Lindstrom, P., Isenburg, M.: Fast and efficient compression of floating-point data. IEEE Trans. Vis. Comput. Graph. 12, 1245–1250 (2006)
Fout, N., Ma, K.L.: An adaptive prediction-based approach to lossless compression of floating-point volume data. IEEE Trans. Vis. Comput. Graph. 18, 2295–2304 (2012)
Fout, N., Ma, K.L.: Fuzzy volume rendering. IEEE Trans. Vis. Comput. Graph. 18, 2335–2344 (2013)
Zheng, Z., Xu, W., Mueller, K.: VDVR: Verifiable volume visualization of projection-based data. IEEE Trans. Vis. Comput. Graph. 16, 1515–1524 (2010)
Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proc. IEEE 93, 216–231 (2005)
Eiter, T., Mannila, H.: Computing discrete Frèchet distance. Technical report CD-TR 94/64, Technische Universität Wien (1994)
Aurell, E., Boffetta, G., Crisanti, A., Paladin, G., Vulpiani, A.: Predictability in the large: an extension of the concept of Lyapunov exponent. J. Phys. A: Math. Gen. 30, 1–26 (1997)
Dormand, J.R., Prince, P.J.: A family of embedded Runge-Kutta formulae. J. Comput. Appl. Math. 6, 19–26 (1980)
Acknowledgements
The work was partly funded by the European Union under the ERC Advanced Grant 291372: Safer-Vis - Uncertainty Visualization for Reliable Data Discovery. The authors want to thank Charles Meneveau from Johns Hopkins University and Tobias Pfaffelmoser from TUM for helpful discussions and constructive criticism.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Treib, M., Bürger, K., Wu, J., Westermann, R. (2016). Compression and Heuristic Caching for GPU Particle Tracing in Turbulent Vector Fields. In: Braz, J., et al. Computer Vision, Imaging and Computer Graphics Theory and Applications. VISIGRAPP 2015. Communications in Computer and Information Science, vol 598. Springer, Cham. https://doi.org/10.1007/978-3-319-29971-6_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-29971-6_8
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-29970-9
Online ISBN: 978-3-319-29971-6
eBook Packages: Computer ScienceComputer Science (R0)