[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Contextual Tracking in Surface Applications: Algorithms and Design Examples

  • Chapter
  • First Online:
Context-Enhanced Information Fusion

Abstract

In this chapter, contextual information is discussed for improving tracking of surface vehicles. Contextual information generally involves any kind of information that is not related directly to kinematic sensor measurements. This information, termed trafficability, is used to incorporate constraints on the vehicle that ultimately deflect the tracks to areas that provide the highest trafficable regions. For example, local terrain slope, ground vegetation and other factors that put constraints on the vehicles can be considered as contextual information. Both kinematic sensor data and contextual information are tied into the overall tracker design through the use of trafficability maps. Two specific design examples are summarized in this chapter. The first example involves ground tracking of vehicles where the contextual information exploits terrain information to aid in the tracking. The second example involves a sea-based maritime application where the contextual information exploits depth, marked shipping channel locations, and high-value unit information as contextual information. Both examples show that the use contextual information can significantly improve tracking performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 139.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Moose, H. Vanlandingham, D. Mccabe, Modeling and estimation for tracking maneuvering targets. IEEE Trans. Aerosp. Electron. Syst. 15(3), 448–456 (1979)

    Article  MATH  Google Scholar 

  2. R. Singer, Estimating optimal tracking filter performance for manned maneuvering targets. IEEE Trans. Aerosp. Electron. Syst. 6(4), 473–483 (1970)

    Article  Google Scholar 

  3. R.J. Fitzgerald, Simple tracking filters: position and velocity measurements. IEEE Trans. Aerosp. Electron. Syst. 18(5), 531–537 (1982)

    Article  MathSciNet  Google Scholar 

  4. T. Kirubarajan, Y. Bar-Shalom, K.R. Pattipati, I. Kadar, Ground target tracking with variable structure IMM estimator. IEEE Trans. Aerosp. Electron. Syst. 36(1), 26–46 (2000)

    Article  Google Scholar 

  5. D.D. Sworder, R.G. Hutchins, Maneuver estimation using measurements of orientation. IEEE Trans. Aerosp. Electron. Syst. 26(4), 625–638 (1990)

    Article  Google Scholar 

  6. M. Ulmke, W. Koch, Road-map assisted ground moving target tracking. IEEE Trans. Aerosp. Electron. Syst. 42(4), 1264–1274 (2006)

    Article  Google Scholar 

  7. D.B. Reid, R.G. Bryson, A non-Gaussian filter for tracking targets moving over terrain, in Proceedings of the 12th Annual Asilomar Conference on Circuits, Systems, and Computers (Pacific Grove, CA, 1978), pp. 112–116

    Google Scholar 

  8. P.O. Nougues, D.E. Brown, We know where you are going: Tracking objects in terrain. IMA J. Math. Appl. Bus. Ind. 8, 39–58 (1997)

    MATH  Google Scholar 

  9. A.T. Alouani, W.D. Blair, G.A. Watson, Bias and observability analysis of target tracking filters using a kinematic constraint, in Proceedings of the Twenty-Third Southeastern Symposium on System Theory, 1991, pp. 229–232

    Google Scholar 

  10. A.T. Alouani, W.D. Blair, Use of a kinematic constraint in tracking constant speed, maneuvering targets. IEEE Trans. Autom. Control 38(7), 1107–1111 (1993)

    Article  MathSciNet  Google Scholar 

  11. D. Tenne, B. Pitman, T. Singh, J. Llinas, Velocity field based tracking of ground vehicles. in RTO-SET-059: Symposium on “Target Tracking and Sensor Data Fusion for Military Observation Systems”, 2003

    Google Scholar 

  12. A.M. Fosbury, T. Singh, J.L. Crassidis, C. Springen, Ground target tracking using terrain information, 10th International Conference on Information Fusion, 2007

    Google Scholar 

  13. J. George, J.L. Crassidis, T. Singh, A.M. Fosbury, Anomaly detection using context aided target tracking. J. Adv. Inf. Fusion 6(1), 39–56 (2011)

    Google Scholar 

  14. C.Y. Chong, D. Garren, T. Grayson, Ground target tracking-a historical perspective. IEEE Aerosp. Conf. 3, 433–448 (2000)

    Google Scholar 

  15. L. Müller, J. Lipiec, T.S. Kornecki, S. Gebhardt, Trafficability and workability of soils, in Encyclopedia of Agrophysics, ed. by J. Gliński, J. Horabik, J. Lipiec (Springer, The Netherlands, 2011), pp. 912–924

    Chapter  Google Scholar 

  16. R. Schubert, E. Richter, G. Wanielik, Comparison and evaluation of advanced motion models for vehicle tracking, in Eleventh International Conference on Information Fusion, 2008

    Google Scholar 

  17. M. Hura, G. McLeod, E. Larson, J. Schneider, D. Gonzales, D. Norton, J. Jacobs, K. O’Connell, W. Little, R. Mesic, L. Jamison, Interoperability: A Continuing Challenge in Coalition Air Operations, Chapter 8. Rand Corporation, 2000

    Google Scholar 

  18. A.P. Dempster, N.M. Laird, D.B. Rubin, Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc.: Ser. B (Methodol.) 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  19. L.D. Stone, R.L. Streit, T.L. Corwin, K.L. Bell, Bayesian Multiple Target Tracking, 2nd edn. (Artech House, Norwood, MA, 2013)

    MATH  Google Scholar 

  20. K. Kastella, C. Kreucher, Multiple model nonlinear filtering for low signal ground target applications. IEEE Trans. Aerosp. Electron. Syst. 41(2), 549–564 (2005)

    Article  Google Scholar 

  21. J.R. Layne., U.C. Piyasena, Adaptive interacting multiple model tracking of maneuvering targets, in Digital Avionics Conference, 1997

    Google Scholar 

  22. H.E Yan, G. Zhi-Jiang, J. Jing-Ping, Design of the adaptive interacting multiple model algorithm, in American Control Conference, 2002, pp. 1538–1542

    Google Scholar 

  23. B. Kim, J.S. Lee, IMM algorithm based on the analytic solution of steady state Kalman filter for radar target tracking, in IEEE International Radar Conference, 2005, pp. 757–7622

    Google Scholar 

  24. R. Enders, Fundamentals of on-road tracking, in SPIE Conference on Aquisition, Tracking and Pointing, 1999

    Google Scholar 

  25. O. Payne, A. Marrs, An unscented particle filter for GMTI tracking, in Proceedings of the 2004 IEEE Aerospace Conference, vol. 3, 2004, pp. 1869–1875

    Google Scholar 

  26. M. Hernandez, Performance bounds for GMTI tracking. Proc. Sixth Int. Conf. Inf. Fusion 1, 406–413 (2003)

    Article  Google Scholar 

  27. A. Arulampalam, N. Gordon, M. Orton, B. Ristic, A variable structure multiple model particle filter for GMTI tracking, in 5th International Conference on Information Fusion, vol. 2, 2002, pp. 927–934

    Google Scholar 

  28. T. Cheng, T. Singh, Efficient particle filtering for road-constrained target tracking, in Eighth International Conference on Information Fusion, 2005

    Google Scholar 

  29. H.A. Blom, Y. Bar-Shalom, The interacting multiple model algorithm for systems with markovian switching coefficients. IEEE Trans. Autom. Control 33(8), 780–783 (1988)

    Article  MATH  Google Scholar 

  30. W.R. Li, Y. Bar-Shalom, Performance prediction of the interacting multiple model algorithm. IEEE Trans. Aerosp. Electron. Syst. 29(3), 755–771 (1993)

    Article  Google Scholar 

  31. F. Castella, F. Dunnebacke, Analytical results for the x, y Kalman tracking filter. IEEE Trans. Aerosp. Electron. Syst. 1, 891–895 (1974)

    Article  Google Scholar 

  32. K. Ramachandra, Kalman Filtering Tachniques for Radar Tracking (Marcel Dekker Inc. 2000)

    Google Scholar 

  33. L.A. Johnston, V. Krishnamurthy, An improvement to the interacting multiple model (IMM) algorithm. IEEE Trans. Sig. Process. 49(12), 2909–2923 (2001)

    Article  Google Scholar 

  34. X. Meng, D.V. Dyk, The EM algorithm-an old folk song sung to a fast new tune. J. R. Stat. Soc. B. 59(3), 511–567 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  35. Y. Boers, J.N. Driessen, Interacting multiple model particle filter. Radar, Sonar and Navigation, IEE Proc. 150(5), 344–349 (2003)

    Article  Google Scholar 

  36. A. Munir, D. Atherton, Maneuvering target tracking using and adaptive interacting multiple model algorithm, in Proceedings of the American Control Conference, 1994

    Google Scholar 

  37. J. Gustafson, P. Maybeck, Control of a large flexible space structure with moving-bank multiple model adaptive algorithms, in Proceedings of the 31th Conference on Decision and Control, 1992, pp. 1273–1278

    Google Scholar 

  38. P. Maybeck, K. Hentz, Investigation of moving-bank multiple model adaptive algorithms. AIAA J. Guidance, Navig., and Control 10(1), 1273–1278 (1987)

    MATH  Google Scholar 

  39. M. Efe, D. Atherton, Maneuvering target tracking with an adaptive Kalman filter, in IEEE Conference on Decision and Control, 1998, pp. 737–742

    Google Scholar 

  40. S.J. Julier, J.K. Uhlmann, H.F. Durrant-Whyte, A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Trans. Autom. Control AC-45(3), 477–482 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  41. X.R. Li, Y. Bar-Shalom, Multiple model estimation with variable structure. IEEE Trans. Autom. Control 41(4), 478–493 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  42. T. Kirubarajan, Y. Bar-Shalom, K.R. Pattipati, Topography based vs. IMM estimator for large scale ground target tracking, in IEEE Colloquium on Target Tracking: Algorithms and Applications, 1999, pp. 11/1–11/4

    Google Scholar 

  43. T. Kirubarajan, Y. Bar-Shalom, Tracking evasive move-stop-move targets with a GMTI radar using a VS-IMM estimator. IEEE Trans. Aerosp. Electron. Syst. 39(3), 1098–1103 (2003)

    Article  Google Scholar 

  44. G. Kravaritis, B. Mulgrew, Ground tracking using a variable structure multiple model particle filter with varying number of particles, in IEEE International Radar Conference, 2005, pp. 837–841

    Google Scholar 

  45. C. Yang, M. Bakich, E. Blasch, Nonlinear constrained tracking of targets on roads, in Eigth International Conference on Information Fusion, 2005

    Google Scholar 

  46. M. Mallick, T. Kirubarajan, S. Arulampalam, Out-of-sequence measurement processing for tracking ground target using particle filters. IEEE Aerosp. Conf. 4, 1809–1818 (2002)

    Google Scholar 

  47. J. Edlund, C. Setterlind, N. Bergman, Branching ground target tracking using sparse manual observations, in Seventh International Conference on Information Fusion, 2004

    Google Scholar 

  48. E. Giannopolous, R. Streit, P. Swaszek, Probabilistic multi-hypothesis tracking in multi-sensor, multi-target environment, in First Australian Data Fusion Symposium, 1996, pp. 184–189

    Google Scholar 

  49. C. Rago, P. Willett, R. Streit, A comparison of the JPDAF and PMHT tracking algorithm. Int. Conf. Acoust., Speech, and Sig. Process. 4, 3571–3574 (1995)

    Google Scholar 

  50. L. Jing, P. Vadakkepat, Multiple targets tracking by optimized particle filter based on multi-scan JPDA, in Instrumentation and Measurement Technology Conference, 2004, pp. 303–308

    Google Scholar 

  51. O. Frank, J. Nieto, J. Guivant, S. Scheding, Multiple target tracking using sequential Monte Carlo methods and statistical data association, in International Conference on Intelligent Robots and Systems, 2003, pp. 2718–2723

    Google Scholar 

  52. Y. Bar-Shalom, K.C. Chang, H.A. Blom, Tracking of splitting targets in clutter using an interacting multiple model joint probabilistic data association filter, in 30th Conference on Decision and Control, 1991, pp. 2043–2048

    Google Scholar 

  53. L. Hong, Z. Ding, Multiple target tracking using a multirate IMMJPDA algorithm. Am. Control Conf. 4, 2427–2431 (1998)

    Google Scholar 

  54. I. Hwang, H. Balakrishnan, K. Roy, C. Tomlin, Multiple target tracking and identity management in clutter, with application to aircraft tracking, in American Control Conference, 2004, pp. 3422–3428

    Google Scholar 

  55. A.K. Singh, N. Sood, Modeling multi target multi sensor data fusion for trajectory tracking. Defence Sci. J. 59(3), 205–214 (2009)

    Article  Google Scholar 

  56. J. Shin, L. Guibas, F. Zhao, A distributed algorithm for managing multi-target identities in wireless ad-hoc sensor networks, in Information Processing in Sensor Networks, 2003, pp. 223–238

    Google Scholar 

  57. I. Hwang, J. Hwang, C. Tomlin, Flight-mode-based aircraft conflict detection using a residual-mean interacting multiple model algorithm, in AIAA Guidance, Navigation and Control Conference, 2003

    Google Scholar 

  58. A. Jouan, H. Michalska, Tracking closely maneuvering targets in clutter with an IMM-JVC algorithm, in Third International Conference on Information Fusion, vol. 1, 2000

    Google Scholar 

  59. D. Castanon, New assignment algoriths for data association. Proc. SPIE 1698, 313–323 (1992)

    Article  Google Scholar 

  60. M. Hadzagic, H. Michalska, A. Jouan, IMM-JVC and IMM-JPDA for closely maneuvering targets. Sig., Syst. Comput. 2, 1278–1282 (2001)

    Google Scholar 

  61. R. Mahler, The multisensor PHD filter, I: General solution via multitarget calculus, in Proceedings of SPIE, vol. 7336, 2009

    Google Scholar 

  62. C.R. Sastry, E.W. Kamen, SME filter approach to multiple target tracking with radar measurements. Radar and Sig. Process., IEE Proc. 140, 251–260 (1993)

    Article  Google Scholar 

  63. W.F. Leven, A.D. Lanterman, Multiple target tracking with symmetric measurement equations using unscented Kalman and particle filters, in 36th Southeastern Symposium on System Theory, 2004, pp. 195–199

    Google Scholar 

  64. J. Farrell, M. Barth, The Global Positioning System and Inertial Navigation (McGraw-Hill, New York, NY, 1998)

    Google Scholar 

  65. J.L. Crassidis, J.L. Junkins, Optimal Estimation of Dynamic Systems, 2nd edn. (CRC Press, Boca Raton, FL, 2012)

    MATH  Google Scholar 

  66. E. Wan, R. van der Merwe, The Unscented Kalman Filter, ed by S. Haykin, chap. 7 (Wiley, New York, NY, 2001)

    Google Scholar 

  67. E.D. Martí, J. García, J.L. Crassidis, Improving multiple-model context-aided tracking through an autocorrelation approach, 16th International Conference on Information Fusion, 2012

    Google Scholar 

  68. H. Leung, Z. Hu, M. Blanchette, Evaluation of multiple target track initiation techniques in real radar tracking environments. Radar, Sonar, and Navig., IEE Proc. 143, 246–254 (1996)

    Article  Google Scholar 

  69. S. Oh, S. Russell, S. Sastry, Markov chain Monte Carlo data association for general multiple target tracking problems, in Conference on Decision and Control, 2004, pp. 735–742

    Google Scholar 

  70. S. Gattein, P. Vannoorenberghe, M. Contat, Prior knowledge integration of road dependant ground target behaviour for improving tracking reliability. in Multisensor, Multisource Information Fusion: Architectures, Algorithms and Applications, 2005, pp. 138–149

    Google Scholar 

  71. J. Vermaak, S.J. Godsill, P. Perez, Monte carlo filtering for multi-target tracking and data association. IEEE Trans. Aerosp. Electron. Syst. 41(1), 309–332 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by funding provided by Overwatch Systems and Silver Bullet Solutions through an Office of Naval Research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John L. Crassidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland (outside the USA)

About this chapter

Cite this chapter

Fosbury, A.M., Crassidis, J.L., George, J. (2016). Contextual Tracking in Surface Applications: Algorithms and Design Examples. In: Snidaro, L., García, J., Llinas, J., Blasch, E. (eds) Context-Enhanced Information Fusion. Advances in Computer Vision and Pattern Recognition. Springer, Cham. https://doi.org/10.1007/978-3-319-28971-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28971-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28969-4

  • Online ISBN: 978-3-319-28971-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics