Abstract
This paper presents VERGE interactive search engine, which is capable of browsing and searching into video content. The system integrates content-based analysis and retrieval modules such as video shot segmentation, concept detection, clustering, as well as visual similarity and object-based search.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
More information and demos of VERGE are available at: http://mklab.iti.gr/verge/
- 2.
Latest VERGE system is available at: http://mklab-services.iti.gr/trec2015_v1/
References
Schoeffmann, K.: A user-centric media retrieval competition: the video browser showdown 2012-2014. IEEE Multimedia 21(4), 8–13 (2014)
Apostolidis, E., Mezaris, V.: Fast shot segmentation combining global and local visual descriptors. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6583–6587 (2014)
Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2564–2571 (2011)
Su, C.-W., Liao, H.-Y.M., Tyan, H.-R., Fan, K.-C., Chen, L.-H.: A motion-tolerant dissolve detection algorithm. IEEE Trans. Multimed. 7, 1106–1113 (2005)
Seo, K.-D., Park, S., Jung, S.-H.: Wipe scene-change detector based on visual rhythm spectrum. IEEE Trans. Consum. Electron. 55(2), 831–838 (2009)
Jegou, H., Douze, M., Schmid, C., Perez, P.: Aggregating local descriptors into a compact image representation. In: Proceedings of CVPR (2010)
Jegou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor search. IEEE Trans. Pattern Anal. Mach. Intell. 33, 117–128 (2011)
Steinbach, M., Karypis, G., Kumar, V.: A comparison of document clustering techniques. In: KDD Workshop on Text Mining (2000)
Markatopoulou, F., Mezaris, V., Pittaras, N., Patras, I.: Local features and a two-layer stacking architecture for semantic concept detection in video. IEEE Trans. Emerg. Topics Comput. 3(2), 193–204 (2015)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv technical report (2014)
Szegedy, C., et al.: Going deeper with convolutions. In: CVPR 2015 (2015). http://arxiv.org/abs/1409.4842
Krizhevsky, A., Ilya, S., Hinton, G.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing System, vol. 25, pp. 1097–1105. Curran Associates, Inc., (2012)
Markatopoulou, F., Mezaris, V., Patras, I.: Cascade of classifiers based on binary, non-binary and deep convolutional network descriptors for video concept detection. In: IEEE International Conference on Image Processing (ICIP 2015). IEEE, Canada (2015)
Safadi B., Quénot, G.: Re-ranking by local re-scoring for video indexing and retrieval. In: 20th ACM International Conference on Information and Knowledge Management, pp. 2081–2084 (2011)
Murtagh, F., Legendre, P.: Ward’s hierarchical agglomerative clustering method: which algorithms implement ward’s criterion? J. Classif. 31(3), 274–295 (2014)
Gialampoukidis, I., Vrochidis, S., Kompatsiaris, I.: Fast visual vocabulary construction for image retrieval using skewed-split k-d trees. In: Proceedings of the 22nd International Conference on MultiMedia Modeling (MMM 2016), Miami (2016)
Acknowledgements
This work was supported by the European Commission under contracts FP7-600826 ForgetIT, FP7-610411 MULTISENSOR and FP7-312388 HOMER.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Moumtzidou, A. et al. (2016). VERGE: A Multimodal Interactive Search Engine for Video Browsing and Retrieval. In: Tian, Q., Sebe, N., Qi, GJ., Huet, B., Hong, R., Liu, X. (eds) MultiMedia Modeling. MMM 2016. Lecture Notes in Computer Science(), vol 9517. Springer, Cham. https://doi.org/10.1007/978-3-319-27674-8_39
Download citation
DOI: https://doi.org/10.1007/978-3-319-27674-8_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-27673-1
Online ISBN: 978-3-319-27674-8
eBook Packages: Computer ScienceComputer Science (R0)