[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

MATLAB/Simulink-Supported EMG Classification on the Raspberry Pi

  • Conference paper
  • First Online:
Computer Aided Systems Theory – EUROCAST 2015 (EUROCAST 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9520))

Included in the following conference series:

Abstract

Patient satisfaction with body-powered myoelectric upper limb prostheses is limited, often resulting in device abandonment. Multifunctional hand prostheses are one potential solution to increase patient acceptance. These require sophisticated control schemes like pattern-recognition-based approaches involving classification of myoelectric signals (MES). To allow fast and flexible evaluation of prosthesis control approaches, a prototyping environment based on the Raspberry Pi and MATLAB/Simulink was created. It supports commonly applied features like RMS and zero crossings as well as classification methods like Naive Bayesian and Support Vector Machine classifiers. After classifier training with a custom MATLAB application, MES can be classified in real-time and the results employed for prosthesis actuation. The setup was tested with five participants for controlling a Michelangelo Hand. Over 90 % of movements were correctly identified for three classes from two channel EMG data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.delsys.com/products/desktop-emg/bagnoli-desktop/.

  2. 2.

    http://hertaville.com/2013/07/24/interfacing-an-spi-adc-mcp3008-chip-to-the- raspberry-pi-using-c/.

  3. 3.

    http://pub.ist.ac.at/~schloegl/matlab/NaN/.

  4. 4.

    http://mathworks.com/hardware-support/raspberry-pi-simulink.html.

References

  1. Achterberg, L.: Mikrocontroller-Implementierung eines MATLAB-Klassifizierers für EMG-Signale. Master’s thesis, Universität der Bundeswehr München (2014)

    Google Scholar 

  2. Attenberger, A., Buchenrieder, K.: An arduino-simulink-control system for modern hand protheses. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part II. LNCS, vol. 8468, pp. 433–444. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  3. Biddiss, E.A., Chau, T.T.: Upper limb prosthesis use and abandonment: a survey of the last 25 years. Prosthet. Orthot. Int. 31(3), 236–257 (2007). http://poi.sagepub.com/content/31/3/236.abstract

    Article  Google Scholar 

  4. Bishop, C.: Pattern Recognition and Machine Learning. Information Science and Statistics. Springer, New York (2006). http://books.google.de/books?id=kTNoQgAACAAJ

    MATH  Google Scholar 

  5. Buchenrieder, K.: Dimensionality reduction for the control of powered upper limb prostheses. In: Proceedings of 14th Annual IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS 2007), pp. 327–333, March 2007

    Google Scholar 

  6. Clancy, E.A., Hogan, N.: Theoretic and Experimental Comparison of Root-Mean-Square and Mean-Absolute-Value Electromyogram Amplitude Detectors (1997). http://www.scopus.com/inward/record.url?eid=2-s2.0-0031293539&partnerID=40&md5=8010dd988aa99b6acccb57ec5bece461

  7. Englehart, K., Hudgins, B., Parker, P., Stevenson, M.: Classification of the myoelectric signal using time-frequency based representations. Med. Eng. Phys. 21(6–7), 431–438 (1999)

    Article  Google Scholar 

  8. Herrmann, S., Buchenrieder, K.: Advanced control schemes for upper limb prosthesis. Adv. Med. Biol. 15, 377–408 (2011)

    Google Scholar 

  9. Jiang, N., Dosen, S., Müller, K., Farina, D.: Myoelectric control of artificial limbs: is there the need for a change of focus? IEEE Signal Process. Mag. 152, 1–4 (2012). doi:10.1109/MSP.2012.2203480. http://www.bfnt-goettingen.de/Publications/articlereference.2013-09-25.4943665964

    Google Scholar 

  10. Microchip Technology Inc.: MCP3204/8 Datasheet. Microchip Technology Inc. (2008)

    Google Scholar 

  11. Muzumdar, A.: Powered Upper Limb Prostheses: Control, Implementation and Clinical Application. Springer, New York (2004)

    Book  Google Scholar 

  12. Paredes, L., Graimann, B.: Advanced myoelectric control of prostheses: requirements and challenges. In: Pons, J.L., Torricelli, D., Pajaro, M. (eds.) Converging Clinical and Engineering Research on Neurorehabilitation, Biosystems & Biorobotics, vol. 1, pp. 1221–1224. Springer, Heidelberg (2013). http://dx.doi.org/10.1007/978-3-642-34546-3_202

    Chapter  Google Scholar 

  13. Peerdeman, B., Boere, D., Witteveen, H.J.B., Huis in ’t Veld, M.H.A., Hermens, H.J., Stramigioli, S., Rietman, J.S., Veltink, P.H., Misra, S.: Myoelectric forearm prostheses: state of the art from a user-centered perspective. J. Rehabil. Res. Dev. 48(6), 719–738 (2011)

    Article  Google Scholar 

  14. van der Riet, D., Stopforth, R., Bright, G., Diegel, O.: An overview and comparison of upper limb prosthetics. In: AFRICON 2013, pp. 1–8, September 2013

    Google Scholar 

  15. Scheme, E., Englehart, K.: Electromyogram pattern recognition for control of powered upper-limb prostheses: state of the art and challenges for clinical use. J. Rehabil. Res. Dev. (JRRD) 48(6), 643–660 (2011). http://www.rehab.research.va.gov/jour/11/486/scheme486.html

    Article  Google Scholar 

  16. Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 4th edn. Academic Press (2008)

    Google Scholar 

Download references

Acknowledgement

We are grateful to M.Sc. Lars Achterberg for his work in implementing the Raspberry Pi ADC software and MATLAB/Simulink model [1]. Furthermore, we like to thank M.Sc. Sebastian Preibisch, M.Sc. Steve Wilhelm and mgr inż Sławomir Wojciechowski for taking part in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Attenberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Attenberger, A., Buchenrieder, K. (2015). MATLAB/Simulink-Supported EMG Classification on the Raspberry Pi. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2015. EUROCAST 2015. Lecture Notes in Computer Science(), vol 9520. Springer, Cham. https://doi.org/10.1007/978-3-319-27340-2_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27340-2_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27339-6

  • Online ISBN: 978-3-319-27340-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics