Abstract
Patient satisfaction with body-powered myoelectric upper limb prostheses is limited, often resulting in device abandonment. Multifunctional hand prostheses are one potential solution to increase patient acceptance. These require sophisticated control schemes like pattern-recognition-based approaches involving classification of myoelectric signals (MES). To allow fast and flexible evaluation of prosthesis control approaches, a prototyping environment based on the Raspberry Pi and MATLAB/Simulink was created. It supports commonly applied features like RMS and zero crossings as well as classification methods like Naive Bayesian and Support Vector Machine classifiers. After classifier training with a custom MATLAB application, MES can be classified in real-time and the results employed for prosthesis actuation. The setup was tested with five participants for controlling a Michelangelo Hand. Over 90 % of movements were correctly identified for three classes from two channel EMG data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Achterberg, L.: Mikrocontroller-Implementierung eines MATLAB-Klassifizierers für EMG-Signale. Master’s thesis, Universität der Bundeswehr München (2014)
Attenberger, A., Buchenrieder, K.: An arduino-simulink-control system for modern hand protheses. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part II. LNCS, vol. 8468, pp. 433–444. Springer, Heidelberg (2014)
Biddiss, E.A., Chau, T.T.: Upper limb prosthesis use and abandonment: a survey of the last 25 years. Prosthet. Orthot. Int. 31(3), 236–257 (2007). http://poi.sagepub.com/content/31/3/236.abstract
Bishop, C.: Pattern Recognition and Machine Learning. Information Science and Statistics. Springer, New York (2006). http://books.google.de/books?id=kTNoQgAACAAJ
Buchenrieder, K.: Dimensionality reduction for the control of powered upper limb prostheses. In: Proceedings of 14th Annual IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS 2007), pp. 327–333, March 2007
Clancy, E.A., Hogan, N.: Theoretic and Experimental Comparison of Root-Mean-Square and Mean-Absolute-Value Electromyogram Amplitude Detectors (1997). http://www.scopus.com/inward/record.url?eid=2-s2.0-0031293539&partnerID=40&md5=8010dd988aa99b6acccb57ec5bece461
Englehart, K., Hudgins, B., Parker, P., Stevenson, M.: Classification of the myoelectric signal using time-frequency based representations. Med. Eng. Phys. 21(6–7), 431–438 (1999)
Herrmann, S., Buchenrieder, K.: Advanced control schemes for upper limb prosthesis. Adv. Med. Biol. 15, 377–408 (2011)
Jiang, N., Dosen, S., Müller, K., Farina, D.: Myoelectric control of artificial limbs: is there the need for a change of focus? IEEE Signal Process. Mag. 152, 1–4 (2012). doi:10.1109/MSP.2012.2203480. http://www.bfnt-goettingen.de/Publications/articlereference.2013-09-25.4943665964
Microchip Technology Inc.: MCP3204/8 Datasheet. Microchip Technology Inc. (2008)
Muzumdar, A.: Powered Upper Limb Prostheses: Control, Implementation and Clinical Application. Springer, New York (2004)
Paredes, L., Graimann, B.: Advanced myoelectric control of prostheses: requirements and challenges. In: Pons, J.L., Torricelli, D., Pajaro, M. (eds.) Converging Clinical and Engineering Research on Neurorehabilitation, Biosystems & Biorobotics, vol. 1, pp. 1221–1224. Springer, Heidelberg (2013). http://dx.doi.org/10.1007/978-3-642-34546-3_202
Peerdeman, B., Boere, D., Witteveen, H.J.B., Huis in ’t Veld, M.H.A., Hermens, H.J., Stramigioli, S., Rietman, J.S., Veltink, P.H., Misra, S.: Myoelectric forearm prostheses: state of the art from a user-centered perspective. J. Rehabil. Res. Dev. 48(6), 719–738 (2011)
van der Riet, D., Stopforth, R., Bright, G., Diegel, O.: An overview and comparison of upper limb prosthetics. In: AFRICON 2013, pp. 1–8, September 2013
Scheme, E., Englehart, K.: Electromyogram pattern recognition for control of powered upper-limb prostheses: state of the art and challenges for clinical use. J. Rehabil. Res. Dev. (JRRD) 48(6), 643–660 (2011). http://www.rehab.research.va.gov/jour/11/486/scheme486.html
Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 4th edn. Academic Press (2008)
Acknowledgement
We are grateful to M.Sc. Lars Achterberg for his work in implementing the Raspberry Pi ADC software and MATLAB/Simulink model [1]. Furthermore, we like to thank M.Sc. Sebastian Preibisch, M.Sc. Steve Wilhelm and mgr inż Sławomir Wojciechowski for taking part in the study.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Attenberger, A., Buchenrieder, K. (2015). MATLAB/Simulink-Supported EMG Classification on the Raspberry Pi. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2015. EUROCAST 2015. Lecture Notes in Computer Science(), vol 9520. Springer, Cham. https://doi.org/10.1007/978-3-319-27340-2_56
Download citation
DOI: https://doi.org/10.1007/978-3-319-27340-2_56
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-27339-6
Online ISBN: 978-3-319-27340-2
eBook Packages: Computer ScienceComputer Science (R0)