[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Dynamics of Predictability and Variable Influences Identified in Financial Data Using Sliding Window Machine Learning

  • Conference paper
  • First Online:
Computer Aided Systems Theory – EUROCAST 2015 (EUROCAST 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9520))

Included in the following conference series:

  • 1654 Accesses

Abstract

In this paper we analyze the dynamics of the predictability and variable interactions in financial data of the years 2007–2014. Using a sliding window approach, we have generated mathematical prediction models for various financial parameters using other available parameters in this data set. For each variable we identify the relevance of other variables with respect to prediction modeling. By applying sliding window machine learning we observe that changes of the predictability of financial variables as well as of influence factors can be identified by comparing modeling results generated for different periods of the last 8 years. We see changes of relationships and the predictability of financial variables over the last years, which corresponds to the fact that relationships and dynamics in the financial sector have changed significantly over the last decade. Still, our results show that the predictability has not decreased for all financial variables, indeed in numerous cases the prediction quality has even improved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wagner, S., Kronberger, G., Beham, A., Kommenda, M., Scheibenpflug, A., Pitzer, E., Vonolfen, S., Kofler, M., Winkler, S., Dorfer, V., Affenzeller, M.: Architecture and design of the HeuristicLab optimization environment. In: Klempous, R., Nikodem, J., Jacak, W., Chaczko, Z. (eds.) Advanced Methods and Applications in Computational Intelligence. TIEI, vol. 6, pp. 193–258. Springer, Heidelberg (2013)

    Google Scholar 

  2. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  3. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. The MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  4. Winkler, S.: Evolutionary System Identification: Modern Concepts and Practical Applications. Schriften der Johannes Kepler Universität Linz, Universitätsverlag Rudolf Trauner (2009)

    Google Scholar 

  5. Affenzeller, M., Winkler, S., Wagner, S., Beham, A.: Genetic Algorithms and Genetic Programming - Modern Concepts and Practical Applications. Chapman & Hall CRC, Boca Raton (2009)

    Book  MATH  Google Scholar 

  6. Kommenda, M., Kronberger, G., Wagner, S., Winkler, S., Affenzeller, M.: On the architecture and implementation of tree-based genetic programming in heuristiclab. In: Proceedings of the 14th Annual Conference Companion on Genetic and Evolutionary Computation, GECCO 2012, pp. 101–108. ACM, New York, NY, USA (2012)

    Google Scholar 

  7. Banzhaf, W., Lasarczyk, C.: Genetic programming of an algorithmic chemistry. In: O’Reilly, U., Yu, T., Riolo, R., Worzel, B. (eds.) Genetic Programming Theory and Practice II, pp. 175–190. Springer, New York (2004). Ann Arbor

    Google Scholar 

  8. Winkler, S., Schaller, S., Dorfer, V., Affenzeller, M., Petz, G., Karpowicz, M.: Data-based prediction of sentiments using heterogeneous model ensembles. Soft Comput. (2014)

    Google Scholar 

  9. Kronberger, G.: Symbolic Regression for Knowledge Discovery. Schriften der Johannes Kepler Universität Linz, Universitätsverlag Rudolf Trauner (2011)

    Google Scholar 

  10. Pearl, J.: Causality: Models, Reasoning and Inference, 2nd edn. Cambridge University Press, New York (2009)

    Book  MATH  Google Scholar 

  11. Winkler, S.M., Kronberger, G., Affenzeller, M., Stekel, H.: Variable interaction networks in medical data. Int. J. Priv. Health Inf. Manage. 1, 1–16 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan M. Winkler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Winkler, S.M., Kronberger, G., Kommenda, M., Fink, S., Affenzeller, M. (2015). Dynamics of Predictability and Variable Influences Identified in Financial Data Using Sliding Window Machine Learning. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2015. EUROCAST 2015. Lecture Notes in Computer Science(), vol 9520. Springer, Cham. https://doi.org/10.1007/978-3-319-27340-2_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27340-2_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27339-6

  • Online ISBN: 978-3-319-27340-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics