Abstract
In this paper we analyze the dynamics of the predictability and variable interactions in financial data of the years 2007–2014. Using a sliding window approach, we have generated mathematical prediction models for various financial parameters using other available parameters in this data set. For each variable we identify the relevance of other variables with respect to prediction modeling. By applying sliding window machine learning we observe that changes of the predictability of financial variables as well as of influence factors can be identified by comparing modeling results generated for different periods of the last 8 years. We see changes of relationships and the predictability of financial variables over the last years, which corresponds to the fact that relationships and dynamics in the financial sector have changed significantly over the last decade. Still, our results show that the predictability has not decreased for all financial variables, indeed in numerous cases the prediction quality has even improved.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Wagner, S., Kronberger, G., Beham, A., Kommenda, M., Scheibenpflug, A., Pitzer, E., Vonolfen, S., Kofler, M., Winkler, S., Dorfer, V., Affenzeller, M.: Architecture and design of the HeuristicLab optimization environment. In: Klempous, R., Nikodem, J., Jacak, W., Chaczko, Z. (eds.) Advanced Methods and Applications in Computational Intelligence. TIEI, vol. 6, pp. 193–258. Springer, Heidelberg (2013)
Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)
Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. The MIT Press, Cambridge (1992)
Winkler, S.: Evolutionary System Identification: Modern Concepts and Practical Applications. Schriften der Johannes Kepler Universität Linz, Universitätsverlag Rudolf Trauner (2009)
Affenzeller, M., Winkler, S., Wagner, S., Beham, A.: Genetic Algorithms and Genetic Programming - Modern Concepts and Practical Applications. Chapman & Hall CRC, Boca Raton (2009)
Kommenda, M., Kronberger, G., Wagner, S., Winkler, S., Affenzeller, M.: On the architecture and implementation of tree-based genetic programming in heuristiclab. In: Proceedings of the 14th Annual Conference Companion on Genetic and Evolutionary Computation, GECCO 2012, pp. 101–108. ACM, New York, NY, USA (2012)
Banzhaf, W., Lasarczyk, C.: Genetic programming of an algorithmic chemistry. In: O’Reilly, U., Yu, T., Riolo, R., Worzel, B. (eds.) Genetic Programming Theory and Practice II, pp. 175–190. Springer, New York (2004). Ann Arbor
Winkler, S., Schaller, S., Dorfer, V., Affenzeller, M., Petz, G., Karpowicz, M.: Data-based prediction of sentiments using heterogeneous model ensembles. Soft Comput. (2014)
Kronberger, G.: Symbolic Regression for Knowledge Discovery. Schriften der Johannes Kepler Universität Linz, Universitätsverlag Rudolf Trauner (2011)
Pearl, J.: Causality: Models, Reasoning and Inference, 2nd edn. Cambridge University Press, New York (2009)
Winkler, S.M., Kronberger, G., Affenzeller, M., Stekel, H.: Variable interaction networks in medical data. Int. J. Priv. Health Inf. Manage. 1, 1–16 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Winkler, S.M., Kronberger, G., Kommenda, M., Fink, S., Affenzeller, M. (2015). Dynamics of Predictability and Variable Influences Identified in Financial Data Using Sliding Window Machine Learning. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2015. EUROCAST 2015. Lecture Notes in Computer Science(), vol 9520. Springer, Cham. https://doi.org/10.1007/978-3-319-27340-2_41
Download citation
DOI: https://doi.org/10.1007/978-3-319-27340-2_41
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-27339-6
Online ISBN: 978-3-319-27340-2
eBook Packages: Computer ScienceComputer Science (R0)