Abstract
It is considered the integrated process \(X(t)= x + \int _0^t Y(s) ds ,\) where Y(t) is a Gauss-Markov process starting from y. The first-passage time (FPT) of X through a constant boundary and the first-exit time of X from an interval (a, b) are investigated, generalizing some results on FPT of integrated Brownian motion.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abundo, M.: On the first-passage time of an integrated Gauss-Markov process. Preprint (2015)
Abundo, M.: On the representation of an integrated Gauss-Markov process. Scientiae Mathematicae Japonicae Online e-2013, pp. 719-723 (2013)
Abundo, M.: Some results about boundary crossing for Brownian motion. Ricerche di Matematica L 2, 283–301 (2001)
Benedetto, E., Sacerdote, L., Zucca, C.: A first passage problem for a bivariate diffusion process: numerical solution with an application to neuroscience when the process is GaussMarkov. J. Comput. Appl. Math. 242, 41–52 (2013)
Darling, D.A., Siegert, A.J.F.: The first passage problem for a continuous Markov process. Ann. Math. Statis. 24, 624–639 (1953)
Goldman, M.: On the first-passage time of the integrated Wiener process. Ann. Math. Statis. 42(6), 2150–2155 (1971)
Lachal, A.: Temps de sortie d’un intervalle borné pour l’intégrale du mouvement Brownien. C.R. Acad. Sci. Paris 324, serie I, pp. 559–564 (1997)
Lachal, A.: L’integrale du mouvement Brownien. J. Appl. Prob. 30, 17–27 (1993)
Lachal, A.: Sur le premier instant de passage de l’integrale du mouvement Brownien. Annales de l’ I.H.P. B, 27(3), pp. 385–405 (1991)
Lansky, P.: The effect of a random initial value in neural first- passage-time models. Math. Biosci. 93(2), 191–215 (1989)
Lefebvre, M.: Moment generating function of a first hitting place for the integrated Ornstein-Uhlenbeck process. Stoch. Proc. Appl. 32, 281–287 (1989)
Masoliver, J., Porrà, J.M.: Exact solution to the exit-time problem for an undamped free particle driven by Gaussian white noise. Phys. Rev. E 53(3), 2243–2256 (1996)
Masoliver, J., Porrà, J.M.: Exact solution to the mean exit-time problem for free inertial processes driven by Gaussian white noise. Phys. Rev. Lett. 75(2), 189–192 (1995)
Nobile, A.G., Pirozzi, E., Ricciardi, L.M.: Asymptotics and evaluations of FPT densities through varying boundaries for Gauss-Markov processes. Scientiae Mathematicae Japonicae 67(2), 241–266 (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Abundo, M., Abundo, M. (2015). Some Remarks on First-Passage Times for Integrated Gauss-Markov Processes. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2015. EUROCAST 2015. Lecture Notes in Computer Science(), vol 9520. Springer, Cham. https://doi.org/10.1007/978-3-319-27340-2_18
Download citation
DOI: https://doi.org/10.1007/978-3-319-27340-2_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-27339-6
Online ISBN: 978-3-319-27340-2
eBook Packages: Computer ScienceComputer Science (R0)