[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Some Remarks on First-Passage Times for Integrated Gauss-Markov Processes

  • Conference paper
  • First Online:
Computer Aided Systems Theory – EUROCAST 2015 (EUROCAST 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9520))

Included in the following conference series:

Abstract

It is considered the integrated process \(X(t)= x + \int _0^t Y(s) ds ,\) where Y(t) is a Gauss-Markov process starting from y. The first-passage time (FPT) of X through a constant boundary and the first-exit time of X from an interval (ab) are investigated, generalizing some results on FPT of integrated Brownian motion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abundo, M.: On the first-passage time of an integrated Gauss-Markov process. Preprint (2015)

    Google Scholar 

  2. Abundo, M.: On the representation of an integrated Gauss-Markov process. Scientiae Mathematicae Japonicae Online e-2013, pp. 719-723 (2013)

    Google Scholar 

  3. Abundo, M.: Some results about boundary crossing for Brownian motion. Ricerche di Matematica L 2, 283–301 (2001)

    MathSciNet  MATH  Google Scholar 

  4. Benedetto, E., Sacerdote, L., Zucca, C.: A first passage problem for a bivariate diffusion process: numerical solution with an application to neuroscience when the process is GaussMarkov. J. Comput. Appl. Math. 242, 41–52 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Darling, D.A., Siegert, A.J.F.: The first passage problem for a continuous Markov process. Ann. Math. Statis. 24, 624–639 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  6. Goldman, M.: On the first-passage time of the integrated Wiener process. Ann. Math. Statis. 42(6), 2150–2155 (1971)

    Article  MATH  Google Scholar 

  7. Lachal, A.: Temps de sortie d’un intervalle borné pour l’intégrale du mouvement Brownien. C.R. Acad. Sci. Paris 324, serie I, pp. 559–564 (1997)

    Google Scholar 

  8. Lachal, A.: L’integrale du mouvement Brownien. J. Appl. Prob. 30, 17–27 (1993)

    Article  MathSciNet  Google Scholar 

  9. Lachal, A.: Sur le premier instant de passage de l’integrale du mouvement Brownien. Annales de l’ I.H.P. B, 27(3), pp. 385–405 (1991)

    Google Scholar 

  10. Lansky, P.: The effect of a random initial value in neural first- passage-time models. Math. Biosci. 93(2), 191–215 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lefebvre, M.: Moment generating function of a first hitting place for the integrated Ornstein-Uhlenbeck process. Stoch. Proc. Appl. 32, 281–287 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. Masoliver, J., Porrà, J.M.: Exact solution to the exit-time problem for an undamped free particle driven by Gaussian white noise. Phys. Rev. E 53(3), 2243–2256 (1996)

    Article  Google Scholar 

  13. Masoliver, J., Porrà, J.M.: Exact solution to the mean exit-time problem for free inertial processes driven by Gaussian white noise. Phys. Rev. Lett. 75(2), 189–192 (1995)

    Article  Google Scholar 

  14. Nobile, A.G., Pirozzi, E., Ricciardi, L.M.: Asymptotics and evaluations of FPT densities through varying boundaries for Gauss-Markov processes. Scientiae Mathematicae Japonicae 67(2), 241–266 (2008)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Abundo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Abundo, M., Abundo, M. (2015). Some Remarks on First-Passage Times for Integrated Gauss-Markov Processes. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2015. EUROCAST 2015. Lecture Notes in Computer Science(), vol 9520. Springer, Cham. https://doi.org/10.1007/978-3-319-27340-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27340-2_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27339-6

  • Online ISBN: 978-3-319-27340-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics