Abstract
We explore the possibilities of Eulerian numbers to define weights in layered networks and model distributed computation at the level of neurons receptive fields. These networks are then compared to those defined by binomial coefficients (Newton filters). Their potential as structures for signals convergence, divergence and overlapping is also established.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Leibovic, K.N.: Principles of brain function: information processing in convergent and divergent pathways. In: Pichler, F., Trappl, R. (eds.) Progress in Cybernetics and Systems, vol. VI, pp. 91–99. Hemisphere, Washington, D.C. (1982)
Moreno-Díaz, A., de Blasio, G., Moreno-Díaz Jr. R.: Distributed, layered and reliable computing nets to represent neuronal receptive fields. Math. Biosci. Eng. 11(2), 343–361 (2014)
Moreno-Díaz Jr., R.: Computación paralela y distribuida: relaciones estructura-función en retinas. Ph.D thesis, Universidad de Las Palmas de Gran Canaria (1993)
Carlitz, L., Kurtz, D.C., Scoville, R., Stakelber, O.P.: Asymptotic properties of Eulerian numbers. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 23(1), 47–54 (1972)
Acknowledgments
This work has been supported, in part, by Spanish Ministry of Science projects MTM2011-28983-CO3-03 and MTM2014-56949-C3-2-R.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
de Blasio, G., Moreno-Díaz, A., Moreno-Díaz, R. (2015). Eulerian Numbers Weigths in Distributed Computing Nets. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2015. EUROCAST 2015. Lecture Notes in Computer Science(), vol 9520. Springer, Cham. https://doi.org/10.1007/978-3-319-27340-2_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-27340-2_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-27339-6
Online ISBN: 978-3-319-27340-2
eBook Packages: Computer ScienceComputer Science (R0)