[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Applying Cryptographic Acceleration Techniques to Error Correction

  • Conference paper
  • First Online:
Innovative Security Solutions for Information Technology and Communications (SECITC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 9522))

Included in the following conference series:

  • 1235 Accesses

Abstract

Modular reduction is the basic building block of many public-key cryptosystems. BCH codes require repeated polynomial reductions modulo the same constant polynomial. This is conceptually very similar to the implementation of public-key cryptography where repeated modular reduction in \(\mathbb {Z}_n\) or \(\mathbb {Z}_p\) are required for some fixed n or p. It is hence natural to try and transfer the modular reduction expertise developed by cryptographers during the past decades to obtain new BCH speed-up strategies. Error correction codes (ECCs) are deployed in digital communication systems to enforce transmission accuracy. BCH codes are a particularly popular ECC family. This paper generalizes Barrett’s modular reduction to polynomials to speed-up BCH ECCs. A BCH(15, 7, 2) encoder was implemented in Verilog and synthesized. Results show substantial improvements when compared to traditional polynomial reduction implementations. We present two BCH code implementations (regular and pipelined) using Barrett polynomial reduction. These implementations, are respectively 4.3 and 6.7 faster than an improved BCH LFSR design. The regular Barrett design consumes around 53 \(\%\) less power than the BCH LFSR design, while the faster pipelined version consumes 2.3 times more power than the BCH LFSR design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 31.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 39.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The scalar product of the two vectors is equal to 0.

  2. 2.

    where b(x) is the remainder of the division of c(x) by g(x).

  3. 3.

    Considered in big endian order.

References

  1. Barrett, P.: Implementing the Rivest Shamir and Adleman public key encryption algorithm on a standard digital signal processor. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 311–323. Springer, Heidelberg (1987)

    Google Scholar 

  2. Bose, R.C., Ray-Chaudhuri, D.K.: On a class of error correcting binary group codes. Inf. Control 3(1), 68–79 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bosselaers, A., Govaerts, R., Vandewalle, J.: Comparison of three modular reduction functions. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 175–186. Springer, Heidelberg (1994)

    Google Scholar 

  4. Chien, R.: Cyclic decoding procedures for Bose-Chaudhuri-Hocquenghem codes. IEEE Trans. Inf. Theor. 10(4), 357–363 (2006)

    Article  MATH  Google Scholar 

  5. Côté, G., Erol, B., Gallant, M., Kossentini, F.: H.263+. IEEE Trans. Circuits Syst. Video Technol. 8, 849–866 (1998)

    Article  Google Scholar 

  6. Gorenstein, D., Zierler, N.: A class of cyclic linear error-correcting codes in \(p^m\) symbols. J. Soc. Ind. Appl. Math. 9, 207–214 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  7. Greuel, G.-M., Pfister, G.: A Singular Introduction to Commutative Algebra, 2nd edn. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  8. Hocquenghem, A.: Codes correcteurs d’erreurs. Chiffres 2, 147–158 (1959)

    MathSciNet  MATH  Google Scholar 

  9. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes, 2nd edn. North-holland Publishing Company, Amsterdam (1978)

    MATH  Google Scholar 

  10. Naccache, D., Msilti, H.: A new modulo computation algorithm. Recherche Operationnelle - Operations Research (RAIRO-OR) 24(3), 307–313 (1990)

    MathSciNet  MATH  Google Scholar 

  11. Steele, R.: Mobile Radio Communications. IEEE Press, Piscataway (1994)

    Google Scholar 

  12. Stine, J.E., Castellanos, I.D., Wood, M., Henson, J., Love, F., Davis, W.R., Franzon, P. D., Bucher, M., Basavarajaiah, S., Oh, J., Jenkal, R.: FreePDK: an open-source variation-aware design kit. In: IEEE International Conference on Microelectronic Systems Education, MSE 2007, pp. 173–174 (2007)

    Google Scholar 

  13. Tolimieri, R., An, M., Lu, C.: Mathematics of Multidimensional Fourier Transform Algorithms. Springer, New York (1993)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana-Ştefania Maimuţ .

Editor information

Editors and Affiliations

Appendices

A Polynomial Barrett Complexity

We decompose the algorithm’s analysis into steps and determine at each step the cost and the size of the result. Size is measured in the number of terms. In all the following we assume that polynomial multiplication is performed using traditional cross product. Faster (e.g. \(\nu \)-dimensional FFT [13]) polynomial multiplication strategies may grandly improve the following complexities for asymptotically increasing \({\varvec{L}}\) and \(\nu \).

Given our focus on on-line operations we do not count the effort required to compute K (that we assume given). We also do not account for the partial multiplication trick for the sake of clarity and conciseness.

Let \(\varvec{\omega } \in \mathbb {Z}^{\nu }\), in this appendix we denote by \(||\varvec{\omega }||\) the quantity

$$\begin{aligned}||\varvec{\omega }|| = \displaystyle \prod _{j=1}^{\nu } \omega _j \in \mathbb {Z}.\end{aligned}$$
  1. 1.

    \(Q \gg {\varvec{y}}_\mathbf 0 \)

    1. 1.1.

      Cost: lm(Q) is at most \(\langle L,... , L \rangle \) hence Q has at most \(L^{\nu }\) monomials. Shifting discards all monomials having exponent vectors \(\varvec{\omega }\) for which \(\exists j\) such that \(\omega _j < y_{j,0}\). The number of such discarded monomials is \(\mathrm{O}(||{\varvec{y}}_\mathbf 0 ||)\), hence the overall complexity of this step is:

      $$\begin{aligned}\mathrm{cost}_1 = \mathrm{O}((L^{\nu }-||{\varvec{y}}_\mathbf 0 ||)\nu ) = \mathrm{O}((L^{\nu }-\prod _{j=1}^{\nu }y_{j,0})\nu ).\end{aligned}$$
    2. 1.2.

      Size: The number of monomials remaining after the shift is

      $$\begin{aligned}\mathrm{size}_1 = \mathrm{O}(L^{\nu } -||{\varvec{y}}_\mathbf 0 ||) = \mathrm{O}(L^{\nu }-\displaystyle \prod _{j=1}^{\nu }y_{j,0}).\end{aligned}$$
  2. 2.

    \(K(Q \gg {\varvec{y}}_\mathbf 0 )\)

    Because K is the result of the division of \(h(L) = \displaystyle \prod _{j=1}^{\nu } x_j^L\) by P, the leading term of K has an exponent vector equal to \({\varvec{L}}-{\varvec{y}}_\mathbf 0 \). This means that K’s second biggest term can be \(x_1^{L-y_{1,0}} \displaystyle \prod _{j=2}^{\nu }x_j^L.\) Hence, the size of K is

    $$\begin{aligned}\mathrm{size}_K = \mathrm{O}((L-y_{1,0})L^{\nu -1}).\end{aligned}$$
    1. 2.1.

      Cost: The cost of computing \(K(Q \gg {\varvec{y}}_\mathbf 0 )\) is

      $$\begin{aligned} \mathrm{cost}_2 = \mathrm{O}(\nu \times \mathrm{size}_1 \times \mathrm{size}_K).\end{aligned}$$
    2. 2.2.

      Size: The size of \(K(Q \gg {\varvec{y}}_\mathbf 0 )\) is determined by lm\((K(Q \gg {\varvec{y}}_\mathbf 0 ))=\) lm\((K) \times \)lm\((Q \gg {\varvec{y}}_\mathbf 0 )\) which has the exponent vector \({\varvec{u}}=({\varvec{L}}-{\varvec{y}}_\mathbf 0 ) + \langle L-y_{1,0},L,... , L \rangle \).

      $$\begin{aligned} \mathrm{size}_2 = \mathrm{O}(||{\varvec{u}}||)&= \mathrm{O}(2(L-y_{1,0})\displaystyle \prod _{j=2}^{\nu }(2L - y_{j,0}))\\&= \mathrm{O}((L-y_{1,0})\displaystyle \prod _{j=2}^{\nu }(2L - y_{j,0})). \end{aligned}$$
  3. 3.

    \(B=(K(Q \gg {\varvec{y}}_\mathbf 0 ))\gg ({\varvec{L}}-{\varvec{y}}_\mathbf 0 )\)

    1. 3.1.

      Cost: The number of discarded monomials is \(\mathrm{O}(||{\varvec{L}}- {\varvec{y}}_\mathbf 0 ||)\), hence the cost of this step is

      $$\begin{aligned} \mathrm{cost}_3 = \mathrm{O}((2(L-y_{1,0}) \prod _{j=2}^{\nu }(2L-y_{j,0})- \prod _{j=1}^{\nu }(L-y_{j,0}))\nu ).\end{aligned}$$
    2. 3.2.

      Size: The leading monomial of B has the exponent vector \({\varvec{u}}-{\varvec{L}}-{\varvec{y}}_\mathbf 0 \) which is equal to \(\langle L-y_{1,0} ,L,... ,L\rangle \). We thus have \(\mathrm{size}_B = \mathrm{size}_K\).

  4. 4.

    BP

    The cost of this step is

    $$\begin{aligned} \mathrm{cost}_4 = \mathrm{O}(\nu \times \mathrm{size}_B \times \mathrm{size}_P) = \mathrm{O}(\nu \times \mathrm{size}_B \times ||{\varvec{y}}_\mathbf 0 ||).\end{aligned}$$
  5. 5.

    Final subtraction \(Q-BP\)

    The cost of polynomial subtraction is negligible with respect to \(\mathrm{cost}_4\).

  6. 6.

    Overall complexity

    The algorithm’s overall complexity is hence

    $$\begin{aligned}\max (\mathrm{cost}_1, \mathrm{cost}_2,\mathrm{cost}_3,\mathrm{cost}_4) = \mathrm{cost}_2.\end{aligned}$$

B Polynomial Barrett: Scheme Code

\(p_1(x)=\sum _{i=0}^{7}(10+i)x^i\) and \(p_2(x)=x^3+x^2+110\)

(define p1 ’((7 17) (6 16) (5 15) (4 14) (3 13) (2 12) (1 11) (0 10)))

(define p2 ’((3 1) (2 1) (0 110)))

;shifting a polynomial to the right

(define shift (lambda (l q)

if (or (null? l) ( \(<\) (caar l) q)) ’() (cons (cons (- (caar l) q) (cdar  l))

(shift (cdr l) q)))))

;adding polynomials

(define add (lambda (p q)

(degre (if ( \(>\) = (caar p) (caar q)) (cons p (list q)) (add q p)))))

;multiplying a term by a polynomial, without monomials \(\prec x^{\text{ lim }}\)

(define txp (lambda (terme p lim)

(if (or (null?p) ( \(>\) lim (+ (car terme) (caar p)))) ’() (cons (cons (+ (car terme)

(caar p)) (list (* (cadr terme) (cadar p)))) (txp terme (cdr p) lim)))))

;multiplying a polynomial by a polynomial, without monomials \(\prec x^{\text{ lim }}\)

(define mul (lambda (p1 p2 lim)

(if p1 (cons (txp (car p1) p2 lim) (mul (cdr p1) p2 lim)) ’())))

;management of the exponents

(define sort (lambda (p n)

(if p (+ ((lambda(x) (if x (cadr x) 0)) (assoc n (car p))) (sort (cdr p) n)) 0)))

(define order (lambda (p n)

(if( \(>\) 0 n) ’() (let ((factor (sort p n))) (if (not (zero?factor))

(cons (cons n (list factor)) (order p (-n 1))) (order p (-n 1)))))))

(define degre (lambda(p) (order p ((lambda(x)(if x x -1)) (caaar p)))))

;Euclidean division

(define divide (lambda (q p r)

(if (and p ( \(<\) = (caar p) (caar q))) (let ((tampon (cons (- (caar q)(caar p))

(list (/ (cadar q) (cadar p)))))) (divide (add (map (lambda(x) (cons (car x)

(list (-cadr x)))))(txp tampon p -1)) q) p (cons tampon r))) (reverse r)))

(define division (lambda (q p) (divide q p ’())))

;Barrett(k, L, last_P and Y representing K, L, P and \({\varvec{y}}\))

(define k)

(define y)

(define L 8)

(define last)

(define barrett (lambda (q p)

(if (eq ? last p) (letrec ((g (caar q)) (h (- (+ g 1) y))) (shift (degre (mul

(shift k (-L g 1)) (shift q y) h)) h)) (begin (set! k (division (list (cons L ’(1) )) p)) (set! y (caar (set! last p))) (barrett q p)))))

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Géraud, R., Maimuţ, DŞ., Naccache, D., Portella do Canto, R., Simion, E. (2015). Applying Cryptographic Acceleration Techniques to Error Correction. In: Bica, I., Naccache, D., Simion, E. (eds) Innovative Security Solutions for Information Technology and Communications. SECITC 2015. Lecture Notes in Computer Science(), vol 9522. Springer, Cham. https://doi.org/10.1007/978-3-319-27179-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27179-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27178-1

  • Online ISBN: 978-3-319-27179-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics