Abstract
Software defined network (SDN) decouples the control plane from packet processing device and introduces the controller placement problem. The previous methods only focus on propagation latency between controllers and switches but ignore either the latency from controllers to controllers or the capacities of controllers, both of which are critical factors in real networks. In this paper, we define a global latency controller placement problem with capacitated controllers, taking into consideration both the latency between controllers and the capacities of controllers. And this paper proposes a particle swarm optimization algorithm to solve the problem for the first time. Simulation results show that the algorithm has better performance in propagation latency, computation time, and convergence.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
McKeown, N., et al.: Open flow: enabling innovation in campus networks. ACM SIGCOMM Comput. Commun. Rev. 38(2), 69–74 (2008)
Lange, S., et al.: Heuristic approaches to the controller placement problem in large scale SDN networks. IEEE Trans. Netw. Serv. Manage. 12(1), 4–17 (2015)
Heller, B., Sherwood, R., McKeown, N.: The controller placement problem. In: Proceedings of ACM SIGGCOM HotSDN, pp. 7–12 (2012)
Hock, D., et al.: POCO-framework for Pareto-optimal resilient controller placement in SDN-based core network. In: IEEE NOMS (2014)
Hu, Y., Wang, W., et al.: Reliability-aware controller placement for software-defined networks. In: IEEE International Symposium on Integrated Network Management (2013)
Yao, G., Bi, J.: On the capacitated controller placement problem in software defined networks. IEEE Commun. Lett. 18(8), 1339–1342 (2014)
Sallahi, A., St-Hilaire, M.: Optimal model for the controller placement problem in software defined networks. IEEE Commun. Lett. 19(1), 30–33 (2015)
Koponen, T., Casado, M., Gude, N., Stribling, J., Poutievski, L., Zhu, M., Ramanathan, R., Iwata, Y., Inoue, H., Hama, T., Shenker, S.: Onix: a distributed control platform for large-scale production networks. In: Proceedings of OSDI (2010)
Jain, S., Kumar, A., Mandal, S., Ong, J., Poutievski, L., Singh, A., Venkata, S., Wanderer, J., Zhou, J., et al.: B4: experience with a globally-deployed software defined wan. ACM SIGCOMM Comput. Commun. Rev. 43, 3–14 (2013)
Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k-median and facility location problems. SIAM J. Comput. 33(3), 544–562 (2004)
Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the 6th International Symposium on Micromachine and Human Science, pp. 39–43 (1995)
Pehlivanoglu, Y.V.: A new particle swarm optimization method enhanced with a periodic mutation strategy and neural networks. IEEE Trans. Evol. Comput. 17(3), 436–452 (2013)
Shi, Y., Eberhart, R.C.: A modified particle swarm optimizer. In: IEEE International Conference of Evolutionary Computation, Piscataway, vol. 8, no. 3, pp. 240–255 (1998)
Gong, M., Cai, Q., Chen, X., Ma, L.: Complex network clustering by multiobjective discrete particle swarm optimization based on decomposition. IEEE Trans. Evol. Comput. 18(1), 82–97 (2014)
Naldi, M.: Connectivity of Waxman topology models. Comput. Commun. 29, 24–31 (2005)
Acknowledgments
The study is supported by the Natural Science Foundation of Shandong Province (Grant No. ZR2015FM008; ZR2013FM029), the Science and Technology Development Program of Jinan (Grant No. 201303010), the National Natural Science Foundation of China (NSFC No. 60773101), and the Fundamental Research Funds of Shandong University (Grant No. 2014JC037).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Gao, C., Wang, H., Zhu, F., Zhai, L., Yi, S. (2015). A Particle Swarm Optimization Algorithm for Controller Placement Problem in Software Defined Network. In: Wang, G., Zomaya, A., Martinez, G., Li, K. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2015. Lecture Notes in Computer Science(), vol 9530. Springer, Cham. https://doi.org/10.1007/978-3-319-27137-8_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-27137-8_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-27136-1
Online ISBN: 978-3-319-27137-8
eBook Packages: Computer ScienceComputer Science (R0)