[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

One-to-One Disjoint Path Covers on Mesh

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9529))

  • 1378 Accesses

Abstract

We propose a new definition to describe the characteristics of a graph. A graph G is strong \(k^*\)-connected if there is a \(r^{*}\)-container between any two distinct vertices u and v of G with \(r \le \min \{ deg(u), deg(v), k\}\). The strong spanning connectivity of graph G, \(s\kappa (G)\), is the maximal value of G satisfies (a) G is strong \(s\kappa (G)^{*}\)-connected and (b) \(s\kappa (G) \le \varDelta (G)\) where \(\varDelta (G)\) is the maximal degree of G. Similarly, strong spanning laceability of bipartite graph G, is denoted by \(s\kappa ^{L}(G)\). A mesh with m rows and n columns is denoted by \(M_{m,n}\). Let m be any even integer and n be any integer. In this paper, we show that \(s\kappa ^{L}(M_{m,n})=3\) if \(\min \{m, n\} \ge 4\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Asdre, K., Nikolopoulos, S.D.: The 1-fixed-end point path cover problem is polynomial on interval graphs. Algorithmica 58(3), 679–710 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chang, C.-H., Lin, C.-K., Huang, H.-M., Hsu, L.-H.: The super laceability of the hypercubes. Inf. Process. Lett. 92, 15–21 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Day, K., Al-Ayyoub, A.E.: Fault diameter of \(k\)-ary \(n\)-cube networks. IEEE Trans. Parallel Distrib. Syst. 8(9), 903–907 (1997)

    Article  Google Scholar 

  4. Hsu, L.-H., Lin, C.-K.: Graph theory and interconnection networks. CRC Press, New York (2008)

    Google Scholar 

  5. Hsu, D.F.: On container width and length in graphs, groups, and networks. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E77–A(4), 668–680 (1994)

    Google Scholar 

  6. Itali, A., Papadimitrion, C.H., Czwacfiter, J.L.: Hamiltonian paths in grid graphs. SIAM J. Comput. 11(4), 676–686 (1982)

    Article  MathSciNet  Google Scholar 

  7. Lai, C.-N.: Optimal construction of all shortest node-disjoint paths in hypercubes with applications. IEEE Trans. Parallel Distrib. Syst. 23(6), 1129–1134 (2012)

    Article  Google Scholar 

  8. Lai, C.-N.: Two conditions for reducing the maximal length of node-disjoint paths in hypercubes. Theoret. Comput. Sci. 418, 82–91 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lai, C.-N.: An efficient construction of one-to-many node-disjoint paths in folded hypercubes. J. Parallel Distrib. Syst. 74(4), 2310–2316 (2014)

    Article  MATH  Google Scholar 

  10. Lai, C.-N.: Constructing all shortest node-disjoint paths in torus networks. J. Parallel Distrib. Syst. 75, 123–132 (2015)

    Article  Google Scholar 

  11. Li, J., Liu, D., Yang, Y., Yuan, J.: One-to-one disjoint path covers on multi-dimensional tori. Int. J. Comput. Math. 92(6), 1114–1123 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lin, C.-K., Huang, H.-M., Hsu, L.-H.: The super connectivity of the pancake graphs and the super laceability of the star graphs. Theoret. Comput. Sci. 339(2–3), 257–271 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lin, C.-K., Tan, J.J.M., Hsu, D.F., Hsu, L.-H.: On the spanning connectivity and spanning laceability of hypercube-like networks. Theoret. Comput. Sci. 381(1–3), 218–229 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Liu, C., Yarvis, M., Conner, W.S., Guo, X.: Guaranteed on-demand discovery of node-disjoint paths in Ad hoc networks. Comput. Commun. 30(14–15), 2917–2930 (2007)

    Article  Google Scholar 

  15. McHugh, J.A.M.: Algorithmic graph theory. Prentice-Hall, Englewood Cliffs (1990)

    MATH  Google Scholar 

  16. Ntafos, S.C., Hakimi, S.L.: On path cover problems in digraphs and applications to program testing. IEEE Trans. Software Eng. 5(5), 520–529 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  17. Park, J.-H., Kim, H.-C., Lim, H.-S.: Many-to-many disjoint path covers in hypercube-like interconnection networks with faulty elements. IEEE Trans. Parallel Distrib. Syst. 17(3), 227–240 (2006)

    Article  Google Scholar 

  18. Park, J.-H., Ihm, I.: Single-source three-disjoint path covers in cubes of connected graphs. Inf. Process. Lett. 113(14–16), 527–532 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Shih, Y.-K., Kao, S.-S.: One-to-one disjoint path covers on \(k\)-ary \(n\)-cubes. Theoret. Comput. Sci. 412(35), 4513–4530 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wu, R.-Y., Chen, G.-H., Kuo, Y.-L., Chang, G.J.: Node-disjoint paths in hierarchical hypercube networks. Inf. Sci. 177(19), 4200–4207 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Xiang, Y., Stewart, I.A.: One-to-many node-disjoint paths in (\(n\), \(k\))-star graphs. Discrete Appl. Math. 158, 62–70 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (No.61572337, No.61572340).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Kuan Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Du, M., Fan, J., Han, Y., Lin, CK. (2015). One-to-One Disjoint Path Covers on Mesh. In: Wang, G., Zomaya, A., Martinez, G., Li, K. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2015. Lecture Notes in Computer Science(), vol 9529. Springer, Cham. https://doi.org/10.1007/978-3-319-27122-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27122-4_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27121-7

  • Online ISBN: 978-3-319-27122-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics