Abstract
In such verb-noun combinations as draw a conclusion, lend support, take a step, the verb acquires a meaning different from its typical meaning usually represented by the first sense in WordNet thus making a correct compositional analysis hard or even impossible. Such non-compositional word combinations are called collocations. The semantics and syntactical properties of collocations can be formalized using lexical functions, a concept of the Meaning-Text Theory. In this paper we realized two series of experiments, both with supervised learning methods on automatic detection of lexical functions in verb-noun collocations using WordNet hypernyms. In the first experimental series, we used hypernyms which correspond to the manually annotated WordNet senses of verbs and nouns in the dataset. In the second series, we used hypernyms corresponding to the typical (first) sense of the verbs. Comparing the results of both experiments we found that the performance of supervised learning on some lexical functions was better in the second case in spite of the fact that the first sense was not the sense of the verbs they have in collocations. This shows that for such lexical functions, the semantics of the verbs is closer to their typical senses and thus non-compositionality of such collocations is weaker. We propose to use the difference in lexical function detection based on the actual sense and the first sense as a simple measure of non-compositionality of verb-noun collocations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Macmillan Dictionary Online, available on http://www.macmillandictionary.com/.
- 2.
WordNet 3.1, available on http://wordnet.princeton.edu/.
- 3.
Merriam-Webster Dictionary Online, available on http://www.merriam-webster.com/.
- 4.
Cambridge Dictionary Online, http://dictionary.cambridge.org/.
- 5.
Corpus of Contemporary American English (COCA) created by Mark Davies, Brigham Young University, available on http://corpus.byu.edu/coca/.
- 6.
Spanish Verb-Noun Lexical Functions, available on http://148.204.58.221/okolesnikova/index.php?id=lex/ and http://www.gelbukh.com/lexical-functions/.
- 7.
- 8.
The University of Waikato Computer Science Department Machine Learning Group, WEKA, available on http://www.cs.waikato.ac.nz/ml/weka/downloading.html/.
References
Alonso-Rorís, V.M., Santos Gago, J.M., Pérez Rodríguez, R., Rivas Costa, C., Gómez Carballa, M.A., Anido Rifón, L.: Information extraction in semantic, highly-structured, and semi-structured web sources. Polibits 49, 69–75 (2014)
Apresjan, J.D.: Lexical Semantics. Vostochnaya Literatura, Russian Academy of Sciences, Moscow (1995). (In Russian)
Apresjan, J.D.: Systematic Lexicography. Oxford University Press, Oxford (2000)
Baldwin, T., Bannard, C., Tanaka, T., Widdows, D.: An empirical model of multiword expression decomposability. In: Proceedings of the ACL 2003 Workshop on Multiword Expressions: Analysis, Acquisition and Treatment, vol. 18, pp. 89–96. Association for Computational Linguistics (2003)
Agarwal, B., Poria, S., Mittal, N., Gelbukh, A., Hussain, A.: Concept-level sentiment analysis with dependency-based semantic parsing: a novel approach. Cogn. Comput. 7(4), 1–13 (2015)
Biemann, C., Giesbrecht, E.: Distributional semantics and compositionality 2011: shared task description and results. In: Proceedings of the Workshop on Distributional Semantics and Compositionality, pp. 21–28. Association for Computational Linguistics (2011)
Bu, F., Zhu, X., Li, M.: Measuring the non-compositionality of multiword expressions. In: Proceedings of the 23rd International Conference on Computational Linguistics, pp. 116–124. Association for Computational Linguistics (2010)
Fazly, A., Stevenson, S.: Distinguishing subtypes of multiword expressions using linguistically motivated statistical measures. In: Grégoire, N., Evert, S., Krenn, B. (eds.) Proceedings of the ACL 2007 Workshop on a Broader Perspective on Multiword Expressions, pp. 9–16. Czech Republic, Prague (2007)
Fontenelle, T.: Using lexical functions to discover metaphors. In: Proceedings of the 6th EURALEX International Congress, pp. 271–278 (1994)
Gelbukh, A., Kolesnikova, O.: Supervised learning for semantic classification of Spanish collocations. In: Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Kittler, J. (eds.) MCPR 2010. LNCS, vol. 6256, pp. 362–371. Springer, Heidelberg (2010)
Hashimoto, K., Stenetorp, P., Miwa, M., Tsuruoka, Y.: Task-Oriented Learning of Word Embeddings for Semantic Relation Classification, arXiv preprint arXiv:1503.00095 (2015)
Hirst, G., St-Onge, D.: Lexical chains as representations of context for the detection and correction of malapropisms. In: WordNet: An electronic Lexical Database, pp. 305–332 (1998)
Inkpen, D., Razavi, A.H.: Topic classification using latent Dirichlet allocation at multiple levels. Int. J. Comput. Linguist. Appl. 6(1), 43–58
Jimenez, S., Gonzalez, F.A., Gelbukh, A.: Soft cardinality in semantic text processing: experience of the SemEval international competitions. Polibits 51, 63–72 (2015)
Johannsen, A., Alonso, H.M., Rishøj, C., Søgaard, A.: Shared task system description: frustratingly hard compositionality prediction. In: Proceedings of the Workshop on Distributional Semantics and Compositionality, pp. 29–32. Association for Computational Linguistics (2011)
Huynh, D., Tran, D., Ma, W., Sharma, D.: Semantic similarity measure using relational and latent topic features. Int. J. Comput. Linguist. Appl. 5(1), 11–25 (2014)
Kahane, S.: What is a natural language and how to describe it? Meaning-text approaches in contrast with generative approaches. In: Gelbukh, A. (ed.) CICLing 2001. LNCS, vol. 2004, pp. 1–17. Springer, Heidelberg (2001)
Kahane, S.: The meaning-text theory. Dependency Valency Int. Handb. Contemp. Res. 1, 546–570 (2003)
Katz, G., Giesbrecht, E.: Automatic identification of non-compositional multi-word expressions using latent semantic analysis. In: Proceedings of the Workshop on Multiword Expressions: Identifying and Exploiting Underlying Properties, pp. 12–19. Association for Computational Linguistics (2006)
Kim, S.N., Baldwin, T.: Detecting compositionality of English verb-particle constructions using semantic similarity. In: Proceedings of the 7th Meeting of the Pacific Association for Computational Linguistics PACLING 2007, pp. 40–48 (2007)
Kittredge, R., Iordanskaja, L., Polguère, A.: Multilingual text generation and the meaning-text theory. In: Proceedings of TMI-88, Pittsburgh, PA (1988)
Kolesnikova, O.: Discriminative ability of WordNet senses on the task of detecting lexical functions in Spanish verb-noun collocations. Int. J. Comput. Linguist. Appl. 5(2), 61–86 (2014)
Kunchukuttan, A., Damani, O.P.: A system for compound noun multiword expression extraction for Hindi. In: 6th International Conference on Natural Language Processing, pp. 20–29 (2008)
Lin, D.: Automatic retrieval and clustering of similar words. In: Proceedings of the 36th Annual Meeting of the Association for Computational Linguistics and 17th International Conference on Computational Linguistics, vol. 2, pp. 768–774. Association for Computational Linguistics (1998)
Lyons, J.: Linguistic Semantics: An Introduction. Cambridge University Press, Cambridge (1995)
McCarthy, D., Keller, B., Carroll, J.: Detecting a continuum of compositionality in phrasal verbs. In: Proceedings of the ACL 2003 Workshop on Multiword Expressions: Analysis, Acquisition and Treatment, vol. 18, pp. 73–80. Association for Computational Linguistics (2003)
McCarthy, D., Venkatapathy, S., Joshi, A.K.: Detecting compositionality of verb-object combinations using selectional preferences. In: EMNLP-CoNLL, pp. 369–379 (2007)
McIntosh, C., Francis, B., Poole, R. (eds.): Oxford Collocations Dictionary for Students of English. Oxford University Press, Oxford (2009)
Mel’čuk, I.A., Žolkovskij, A.K.: Towards a functioning ‘Meaning-Text’ model of language. Linguistics 8(57), 10–47 (1970)
Mel’čuk, I.A.: Toward a Theory of Meaning-Text Linguistic Models. Nauka Publishers, Moscow (1974)
Mel’čuk, I.A.: Lexical functions: a tool for the description of lexical relations in a lexicon. In: Wanner, L. (ed.) Lexical Functions in Lexicography and Natural Language Processing, pp. 37–102. Benjamins Academic Publishers, Amsterdam, Philadelphia, PA (1996)
Mel’čuk, I.A.: Semantics: From Meaning to Text, vol. 3. John Benjamins Publishing Company, Amsterdam (2015)
Milićević, J.: A short guide to the meaning-text linguistic theory. J. Koralex 8, 187–233 (2006)
Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)
Miller, G.A., Leacock, C., Tengi, R., Bunker, R.T.: A semantic concordance. In: Proceedings of the Workshop on Human Language Technology Association for Computational Linguistics, pp. 303–308 (1993)
Mohler, M., Tomlinson, M., Rink, B.: Cross-lingual semantic generalization for the detection of metaphor. Int. J. Comput. Linguist. Appl. 6(2), 115–136 (2015)
Nakagawa, H., Mori, T.: Automatic term recognition based on statistics of compound nouns and their components. Terminology 9(2), 201–219 (2003)
Orliac, B., Dillinger, M.: Collocation extraction for machine translation. In: Proceedings of Machine Translation Summit IX, pp. 292–298 (2003)
Pakray, P., Neogi, S., Bhaskar, P., Poria, S., Bandyopadhyay, S., Gelbukh, A.: A textual entailment system using anaphora resolution. In: System Report. Recognizing Textual Entailment Track (TAC RTE). Notebook. National Institute of Standards and Technology (2011)
Pakray, P., Pal, S., Poria, S., Bandyopadhyay, S., Gelbukh, A.: JU_CSE_TAC: textual entailment recognition system at TAC RTE-6. In: System Report, Text Analysis Conference Recognizing Textual Entailment Track (TAC RTE). Notebook. National Institute of Standards and Technology (2010)
Pakray, P., Poria, S., Bandyopadhyay, S., Gelbukh, A.: Semantic textual entailment recognition using UNL. Polibits 43, 23–27 (2011)
Pecina, P.: An extensive empirical study of collocation extraction methods. In: Proceedings of the ACL Student Research Workshop, pp. 13–18. Association for Computational Linguistics (2005)
Poria, S., Agarwal, B., Gelbukh, A., Hussain, A., Howard, N.: Dependency-based semantic parsing for concept-level text analysis. In: Gelbukh, A. (ed.) CICLing 2014, Part I. LNCS, vol. 8403, pp. 113–127. Springer, Heidelberg (2014)
Poria, S., Cambria, E., Gelbukh, A.: Deep convolutional neural network textual features and multiple kernel learning for utterance-level multimodal sentiment analysis. In: Proceedings of EMNLP 2015, Lisbon, pp. 2539–2544 (2015)
Poria, S., Cambria, E., Gelbukh, A., Bisio, F., Hussain, A.: Sentiment data flow analysis by means of dynamic linguistic patterns. IEEE Comput. Intell. Mag. 10(4), 26–36 (2015)
Poria, S., Cambria, E., Howard, N., Huang, G.-B., Hussain, A.: Fusing audio, visual and textual clues for sentiment analysis from multimodal content. Neurocomputing (2015, in press). doi:10.1016/j.neucom.2015.01.095
Poria, S., Cambria, E., Winterstein, G., Huang, G.-B.: Sentic patterns: dependency-based rules for concept-level sentiment analysis. Knowl.-Based Syst. 69, 45–63 (2014)
Poria, S., Gelbukh, A., Agarwal, B., Cambria, E., Howard, N.: Common sense knowledge based personality recognition from text. In: Castro, F., Gelbukh, A., González, M. (eds.) MICAI 2013, Part II. LNCS, vol. 8266, pp. 484–496. Springer, Heidelberg (2013)
Poria, S., Gelbukh, A., Das, D., Bandyopadhyay, S.: Fuzzy clustering for semi-supervised learning – case study: construction of an emotion lexicon. In: Batyrshin, I., González Mendoza, M. (eds.) MICAI 2012, Part I. LNCS, vol. 7629, pp. 73–86. Springer, Heidelberg (2013)
Poria, S., Gelbukh, A., Cambria, E., Hussain, A., Huang, G.-B.: EmoSenticSpace: a novel framework for affective common-sense reasoning. Knowl.-Based Syst. 69, 108–123 (2014)
Reddy, S., McCarthy, D., Manandhar, S., Gella, S.: Exemplar-based word-space model for compositionality detection: shared task system description. In: Proceedings of the Workshop on Distributional Semantics and Compositionality, pp. 54–60. Association for Computational Linguistics (2011)
Rinaldi, F., Lithgow-Serrano, O., López-Fuentes, A., Gama-Castro, S., Balderas-Martínez, Y.I., Solano-Lira, H., Collado-Vides, J.: An approach towards semi-automated biomedical literature curation and enrichment for a major biological database. Polibits 52, 25–31 (2015)
Rohde, D.L., Gonnerman, L.M., Plaut, D.C.: An improved model of semantic similarity based on lexical co-occurrence. Commun. ACM 8, 627–633 (2006)
Sag, I.A., Baldwin, T., Bond, F., Copestake, A., Flickinger, D.: Multiword expressions: a pain in the neck for NLP. In: Gelbukh, A. (ed.) CICLing 2002. LNCS, vol. 2276, pp. 1–15. Springer, Heidelberg (2002)
Schütze, H.: Automatic word sense discrimination. Comput. Linguist. 24(1), 97–123 (1998)
Sidorov, G.: Should syntactic N-grams contain names of syntactic relations? Int. J. Comput. Linguist. Appl. 5(2), 23–46 (2014)
Sidorov, G., Kobozeva, I., Zimmerling, A., Chanona-Hernández, L., Kolesnikova, O.: Modelo computacional del diálogo basado en reglas aplicado a un robot guía móvil. Polibits 50, 35–42 (2014)
Smadja, F.A., McKeown, K.R.: Automatically extracting and representing collocations for language generation. In: Proceedings of the 28th Annual Meeting on Association for Computational Linguistics, pp. 252–259. Association for Computational Linguistics (1990)
Svensson, M.H.: A very complex criterion of fixedness: non-compositionality. Phraseology Interdisc. Perspect. S. Granger 81, 81–93 (2008)
Van de Cruys, T., Moirón, B.V.: Semantics-based multiword expression extraction. In: Proceedings of the Workshop on a Broader Perspective on Multiword Expressions, pp. 25–32. Association for Computational Linguistics (2007)
Venkatapathy, S., Joshi, A.K.: Measuring the relative compositionality of verb-noun (VN) collocations by integrating features. In: Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing, pp. 899–906. Association for Computational Linguistics (2005)
Vossen, P. (ed.): EuroWordNet: a Multilingual Database with Lexical Semantic Networks. Kluwer Academic Publishers, Dordrecht (1998)
Wanner, L. (ed.): Recent Trends in Meaning-Text Theory. John Benjamins Publishers, Amsterdam, Philadelphia (1997)
Witten, I.H., Frank, E., Hall, M.A.: Data mining: Practical machine learning tools and techniques. Morgan Kaufmann Publishers, MA, USA (2011)
Zabokrtský, Z.: Resemblances between meaning-text theory and functional generative description. In: Proceedings of Second International Conference on Meaning–Text Theory, Moscow (2005)
Žolkovskij, A.K., Mel’čuk, I.A.: On a possible method an instruments for semantic synthesis (of texts), in Russian. Sci. Technol. Inf. 6, 23–28 (1965). (in Russian)
Žolkovskij, A.K., Mel’čuk, I.A.: On semantic synthesis (of texts), in Russian. Probl. Cybern. 19, 177–238 (1967). (in Russian)
Acknowledgements
The work was done under partial support of Mexican Government: SNI and Instituto Politécnico Nacional, grants SIP 20152095 and SIP 20152100.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Kolesnikova, O., Gelbukh, A. (2015). Measuring Non-compositionality of Verb-Noun Collocations Using Lexical Functions and WordNet Hypernyms. In: Pichardo Lagunas, O., Herrera Alcántara, O., Arroyo Figueroa, G. (eds) Advances in Artificial Intelligence and Its Applications. MICAI 2015. Lecture Notes in Computer Science(), vol 9414. Springer, Cham. https://doi.org/10.1007/978-3-319-27101-9_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-27101-9_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-27100-2
Online ISBN: 978-3-319-27101-9
eBook Packages: Computer ScienceComputer Science (R0)