Abstract
In this paper, we investigate the performance of introducing competition in cooperative coevolutionary algorithms to solve large-scale fully-separable continuous optimization problems. It may seem that solving large-scale fully-separable functions is trivial by means of problem decomposition. In principle, due to lack of variable interaction in fully-separable problems, any decomposition is viable. However, the decomposition strategy has shown to have a significant impact on the performance of cooperative coevolution on such functions. Finding an optimal decomposition strategy for solving fully-separable functions is laborious and requires extensive empirical studies. In this paper, we use a competitive two-island cooperative coevolution in which two decomposition strategies compete and collaborate to solve a fully-separable problem. Each problem decomposition has features that may be beneficial at different stages of optimization. Therefore, competition and collaboration of such decomposition strategies may eliminate the need for finding an optimal decomposition. The experimental results in this paper suggest that competition and collaboration of suboptimal decomposition strategies of a fully-separable problem can generate better solutions than the standard cooperative coevolution with standalone decomposition strategies. We also show that a decomposition strategy that implements competition against itself can also improve the overall optimization performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Weise, T., Chiong, R., Tang, K.: Evolutionary optimization: pitfalls and booby traps. J. Comput. Sci. Technol. (JCST) 27(5), 907–936 (2012). Special Issue on Evolutionary Computation
Potter, M.A., De Jong, K.A.: A cooperative coevolutionary approach to function optimization. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN 1994. LNCS, vol. 866, pp. 249–257. Springer, Heidelberg (1994)
Bäck, T., Fogel, D.B., Michalewicz, Z. (eds.): Handbook of Evolutionary Computation. Institute of Physics Publishing, Bristol, Oxford University Press, New York (1997)
Salomon, R.: Reevaluating genetic algorithm performance under coordinate rotation of benchmark functions - a survey of some theoretical and practical aspects of genetic algorithms. BioSystems 39, 263–278 (1995)
Omidvar, M., Li, X., Mei, Y., Yao, X.: Cooperative co-evolution with differential grouping for large scale optimization. IEEE Trans. Evol. Comput. 18(3), 378–393 (2014)
Liu, Y., Yao, X., Zhao, Q., Higuchi, T.: Scaling up fast evolutionary programming with cooperative coevolution. In: Proceedings of the 2001 Congress on Evolutionary Computation, vol. 2, pp. 1101–1108. IEEE (2001)
Mahdavi, S., Shiri, M.E., Rahnamayan, S.: Cooperative co-evolution with a new decomposition method for large-scale optimization. In: Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2014, pp. 1285–1292 (2014)
Chen, W., Weise, T., Yang, Z., Tang, K.: Large-scale global optimization using cooperative coevolution with variable interaction learning. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6239, pp. 300–309. Springer, Heidelberg (2010)
Omidvar, M.N., Li, X., Yao, X.: Cooperative co-evolution with delta grouping for large scale non-separable function optimization. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 1762–1769 (2010)
Omidvar, M.N., Li, X., Tang, K.: Designing benchmark problems for large-scale continuous optimization. Inf. Sci. 316, 419–436 (2015)
Omidvar, M.N., Mei, Y., Li, X.: Effective decomposition of large-scale separable continuous functions for cooperative co-evolutionary algorithms. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 1305–1312 (2014)
Chandra, R., Bali, K.: Competitive two island cooperative coevolution for real parameter global optimization. In: IEEE Congress on Evolutionary Computation, Sendai, Japan, pp. 93–100, May 2015
Chandra, R.: Competition and collaboration in cooperative coevolution of Elman recurrent neural networks for time-series prediction. IEEE Trans. Neural Netw. Learn. Syst. (2015). doi:10.1109/TNNLS.2015.2404823. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7055352&isnumber=6104215
Chandra, R.: Competitive two-island cooperative coevolution for training Elman recurrent networks for time series prediction. In: International Joint Conference on Neural Networks (IJCNN), Beijing, China, pp. 565–572, July 2014
Van den Bergh, F., Engelbrecht, A.P.: A cooperative approach to particle swarm optimization. IEEE Trans. Evol. Comput. 8(3), 225–239 (2004)
De Jong, K.A.: Analysis of the behavior of a class of genetic adaptive systems (1975)
Li, X., Tang, K., Omidvar, M.N., Yang, Z., Qin, K.: Benchmark functions for the CEC 2013 special session and competition on large-scale global optimization. RMIT University, Melbourne, Australia, Technical Report (2013). http://goanna.cs.rmit.edu.au/xiaodong/cec13-lsgo
Hansen, N., Finck, S., Ros, R., Auger, A., et al.: Real-parameter black-box optimization benchmarking 2009: Noiseless functions definitions (2009)
Molga, M., Smutnicki, C.: Test functions for optimization needs (2005). http://www.zsd.ict.pwr.wroc.pl/files/docs/functions.pdf
Deb, K., Anand, A., Joshi, D.: A computationally efficient evolutionary algorithm for real-parameter optimization. Evol. Comput. 10(4), 371–395 (2002)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Bali, K.K., Chandra, R., Omidvar, M.N. (2015). Competitive Island-Based Cooperative Coevolution for Efficient Optimization of Large-Scale Fully-Separable Continuous Functions. In: Arik, S., Huang, T., Lai, W., Liu, Q. (eds) Neural Information Processing. ICONIP 2015. Lecture Notes in Computer Science(), vol 9491. Springer, Cham. https://doi.org/10.1007/978-3-319-26555-1_16
Download citation
DOI: https://doi.org/10.1007/978-3-319-26555-1_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-26554-4
Online ISBN: 978-3-319-26555-1
eBook Packages: Computer ScienceComputer Science (R0)