[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Temporal PageRank on Social Networks

  • Conference paper
  • First Online:
Web Information Systems Engineering – WISE 2015 (WISE 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9418))

Included in the following conference series:

Abstract

Social network has been a widely accepted way for people to communicate and interact online. However, few of existing works studied temporal dimension in assessing the authority of nodes on social networks. In this paper, a novel Temporal PageRank (T-PR) algorithm is proposed for analyzing the authority of nodes. Three temporal factors are adopted to personalize PageRank, which favors the nodes that are more important to people. They are Built-up Time-length Factor (BTF), Frequency Factor (FF), and Similarity Factor (SF). The experiments on a real data set demonstrate T-PR algorithm provides the best ranking results over recent competitor methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anagnostopoulos, A., Kumar, R., Mahdian, M.: Influence and correlation in social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 7–15. ACM (2008)

    Google Scholar 

  2. Baeza-Yates, R., Saint-Jean, F., Castillo, C.D.: Web structure, dynamics and page quality. In: Laender, A.H.F., Oliveira, A.L. (eds.) SPIRE 2002. LNCS, vol. 2476, pp. 117–130. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Berberich, K., Vazirgiannis, M., Weikum, G.: Time-aware authority ranking. Internet Math. 2(3), 301–332 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Borodin, A., Roberts, G.O., Rosenthal, J.S., Tsaparas, P.: Finding authorities and hubs from link structures on the world wide web. In: Proceedings of the 10th International Conference on World Wide Web, pp. 415–429. ACM (2001)

    Google Scholar 

  5. Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., Hullender, G.: Learning to rank using gradient descent. In: Proceedings of the 22nd International Conference on Machine learning, pp. 89–96. ACM (2005)

    Google Scholar 

  6. Cho, J., Roy, S.: Impact of search engines on page popularity. In: Proceedings of the 13th International Conference on World Wide Web, pp. 20–29. ACM (2004)

    Google Scholar 

  7. Fiala, D.: Time-aware PageRank for bibliographic networks. J. Informetrics 6(3), 370–388 (2012)

    Article  Google Scholar 

  8. Geng, X., Liu, T.Y., Qin, T., Arnold, A., Li, H., Shum, H.Y.: Query dependent ranking using k-nearest neighbor. In: Proceedings of the 31st aNnual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 115–122. ACM (2008)

    Google Scholar 

  9. Gonçalves, B., Meiss, M.R., Ramasco, J.J., Flammini, A., Menczer, F.: Remembering what we like: toward an agent-based model of web traffic (2009). arXiv preprint arXiv:0901.3839

  10. Guo, Y.Z., Ramamohanarao, K., Park, L.A.: Personalized pagerank for web page prediction based on access time-length and frequency. In: IEEE/WIC/ACM International Conference on Web Intelligence, pp. 687–690. IEEE (2007)

    Google Scholar 

  11. Haveliwala, T.H.: Topic-sensitive PageRank: a context-sensitive ranking algorithm for web search. IEEE Trans. Knowl. Data Eng. 15(4), 784–796 (2003)

    Article  Google Scholar 

  12. Hu, W., Gong, Z.: Assessing the credibility of nodes on multiple-relational social networks. In: Benatallah, B., Bestavros, A., Manolopoulos, Y., Vakali, A., Zhang, Y. (eds.) WISE 2014, Part II. LNCS, vol. 8787, pp. 62–77. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  13. Ieong, S., Mishra, N., Sadikov, E., Zhang, L.: Domain bias in web search. In: Proceedings of the Fifth ACM International Conference on Web Search and Data Mining, pp. 413–422. ACM (2012)

    Google Scholar 

  14. Jeh, G., Widom, J.: Simrank: a measure of structural-context similarity. In: KDD, pp. 538–543 (2002)

    Google Scholar 

  15. Júnior, P.S.P., Gonçalves, M.A., Laender, A.H., Salles, T., Figueiredo, D.: Time-aware ranking in sport social networks. J. Inf. Data Manag. 3(3), 195 (2012)

    Google Scholar 

  16. Kamvar, S.D., Haveliwala, T.H., Manning, C.D., Golub, G.H.: Extrapolation methods for accelerating pagerank computations. In: Proceedings of the 12th International Conference on World Wide Web, pp. 261–270. ACM (2003)

    Google Scholar 

  17. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46(5), 604–632 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kohlschütter, C., Chirita, P.A., Nejdl, W.: Utility analysis for topically biased pagerank. In: Proceedings of the 16th International Conference on World Wide Web, WWW 2007, pp. 1211–1212. ACM, New York (2007). http://doi.acm.org/10.1145/1242572.1242770

  19. Liu, Y., Gao, B., Liu, T.Y., Zhang, Y., Ma, Z., He, S., Li, H.: Browserank: letting web users vote for page importance. In: Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 451–458. ACM (2008)

    Google Scholar 

  20. Liu, Y., Liu, T.Y., Gao, B., Ma, Z., Li, H.: A framework to compute page importance based on user behaviors. Inf. Retrieval 13(1), 22–45 (2010)

    Article  Google Scholar 

  21. Manaskasemsak, B., Rungsawang, A., Yamana, H.: Time-weighted web authoritative ranking. Inf. Retrieval 14(2), 133–157 (2011)

    Article  Google Scholar 

  22. Meiss, M.R., Menczer, F., Fortunato, S., Flammini, A., Vespignani, A.: Ranking web sites with real user traffic. In: Proceedings of the 2008 International Conference on Web Search and Data Mining, pp. 65–76. ACM (2008)

    Google Scholar 

  23. Ntoulas, A., Cho, J., Olston, C.: What’s new on the web? The evolution of the web from a search engine perspective. In: Proceedings of the 13th International Conference on World Wide Web, pp. 1–12. ACM (2004)

    Google Scholar 

  24. Otterbacher, J., Hemphill, L., Dekker, E.: Helpful to you is useful to me: the use and interpretation of social voting. Proc. Am. Soc. Inf. Sci. Technol. 48(1), 1–10 (2011)

    Article  Google Scholar 

  25. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: bringing order to the web. Technical report, Stanford InfoLab, November 1999. http://ilpubs.stanford.edu:8090/422/

  26. Richardson, M., Prakash, A., Brill, E.: Beyond pagerank: machine learning for static ranking. In: Proceedings of the 15th International Conference on World Wide Web, pp. 707–715. ACM (2006)

    Google Scholar 

  27. Rungsawang, A., Puntumapon, K., Manaskasemsak, B.: Un-biasing the link farm effect in pagerank computation. In: 2007 21st International Conference on Advanced Information Networking and Applications, AINA 2007, pp. 924–931. IEEE (2007)

    Google Scholar 

  28. Vanneste, B., Puranam, P., Kretschmer, T.: Trust over time in exchange relationships: meta-analysis and theory. Strat. Manag.J. (2013). Forthcoming

    Google Scholar 

  29. Xu, J., Li, H.: Adarank: a boosting algorithm for information retrieval. In: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 391–398. ACM (2007)

    Google Scholar 

  30. Yu, P.S., Li, X., Liu, B.: Adding the temporal dimension to search-a case study in publication search. In: 2005 Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence, pp. 543–549. IEEE (2005)

    Google Scholar 

Download references

Acknowledgments

This work was partially sponsored by Grant FDCT/106/2012/ A3, FDCT/116/2013/A3 from Fund of Science and Technology Development of Macau Government and MYRG105-FST13-GZG from University of Macau Research Committee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weishu Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Hu, W., Zou, H., Gong, Z. (2015). Temporal PageRank on Social Networks. In: Wang, J., et al. Web Information Systems Engineering – WISE 2015. WISE 2015. Lecture Notes in Computer Science(), vol 9418. Springer, Cham. https://doi.org/10.1007/978-3-319-26190-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26190-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26189-8

  • Online ISBN: 978-3-319-26190-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics