Abstract
This paper presents a novel depth information utilization method for performance boosting of tracking in traditional RGB trackers for arbitrary objects (objects not known in advance) by object segmentation/separation supported by depth information. The main focus is on real-time applications, such as robotics or surveillance, where exploitation of depth sensors, that are nowadays affordable, is not only possible but also feasible. The aim is to show that the depth information used for target segmentation significantly helps reducing incorrect model updates caused by occlusion or drifts and improves success rate and precision of traditional RGB tracker while keeping comparably efficient and thus possibly real-time. The paper also presents and discusses the achieved performance results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adam, A., Rivlin, E., Shimshoni, I.: Robust fragments-based tracking using the integral histogram. In: CVPR, pp. 798–805. IEEE Computer Society (2006)
Babenko, B., Yang, M.H., Belongie, S.: Visual tracking with online multiple instance learning. In: Computer Vision and Pattern Recognition (CVPR), pp. 983–990 (2009)
Benenson, R., Mathias, M., Timofte, R., Gool, L.V.: Pedestrian detection at 100 frames per second. In: Computer Vision and Pattern Recognition (CVPR), pp. 2903–2910, June 2012
Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)
Briechle, K., Hanebeck, U.D.: Template matching using fast normalized cross correlation. Proceedings of SPIE: Optical Pattern Recognition XII 4387, 95–102 (2001)
Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3), 273–297 (1995)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. Computer Vision and Pattern Recognition (CVPR) 1, 886–893 (2005)
Dinh, T.B., Vo, N., Medioni, G.: Context tracker: exploring supporters and distracters in unconstrained environments. In: CVPR. IEEE (2011)
Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. Pattern Analysis and Machine Intelligence 32(9), 1627–1645 (2010)
Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55(1), 119–139 (1997)
Hare, S., Saffari, A., Torr, P.H.S.: Struck: structured output tracking with kernels. In: Computer Vision (ICCV), pp. 263–270 (2011)
Jepson, A.D., Fleet, D.J., El-Maraghi, T.F.: Robust online appearance models for visual tracking. Pattern Analysis and Machine Intelligence 25(10), 1296–1311 (2003)
Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection. In: Pattern Analysis and Machine Intelligence, vol. 34, pp. 1409–1422. IEEE (2012)
Keskin, C., Kirac, F., Kara, Y.E., Akarun, L.: Randomized decision forests for static and dynamic hand shape classification. In: Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 31–36, June 2012
Liu, L., Xing, J., Ai, H.: Online structure learning for robust object tracking. In: ICIP (2013)
Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Hayes, P.J. (ed.) IJCAI, pp. 674–679. William Kaufmann (1981)
McKenna, S.J., Raja, Y., Gong, S.: Tracking colour objects using adaptive mixture models. Image and Vision Computing 17(34), 225–231 (1999)
Mei, X., Ling, H., Wu, Y., Blasch, E., Bai, L.: Minimum error bounded efficient l1 tracker with occlusion detection. In: Computer Vision and Pattern Recognition (CVPR), pp. 1257–1264 (2011)
Mora, K.A.F., Odobez, J.M.: Gaze estimation from multimodal kinect data. In: Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 25–30, June 2012
Nguyen, H.T., Smeulders, A.W.M.: Fast occluded object tracking by a robust appearance filter. Pattern Analysis and Machine Intelligence 26(8), 1099–1104 (2004)
Ozuysal, M., Calonder, M., Lepetit, V., Fua, P.: Fast keypoint recognition using random ferns. Pattern Analysis and Machine Intelligence 32(3), 448–461 (2010)
Ren, C.Y., Prisacariu, V., Murray, D., Reid, I.: Star3d: Simultaneous tracking and reconstruction of 3d objects using rgb-d data. In: 2013 IEEE International Conference on Computer Vision (ICCV), pp. 1561–1568, December 2013
Ross, D.A., Lim, J., Lin, R.S., Yang, M.H.: Incremental learning for robust visual tracking. International Journal of Computer Vision 77(1–3), 125–141 (2008)
Song, S., Xiao, J.: Tracking revisited using rgbd camera: unified benchmark and baselines. In: ICCV (2013)
Sun, M., Kohli, P., Shotton, J.: Conditional regression forests for human pose estimation. In: CVPR. IEEE (2012)
Tomasi, C., Kanade, T.: Detection and tracking of point features. Technical Report CMU-CS-91-132, Carnegie Mellon University, April 1991
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Chrapek, D., Beran, V., Zemcik, P. (2015). Depth-Based Filtration for Tracking Boost. In: Battiato, S., Blanc-Talon, J., Gallo, G., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2015. Lecture Notes in Computer Science(), vol 9386. Springer, Cham. https://doi.org/10.1007/978-3-319-25903-1_19
Download citation
DOI: https://doi.org/10.1007/978-3-319-25903-1_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-25902-4
Online ISBN: 978-3-319-25903-1
eBook Packages: Computer ScienceComputer Science (R0)