[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Moderate Attribute Reduction Approach in Decision-Theoretic Rough Set

  • Conference paper
  • First Online:
Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9437))

Abstract

Attribute reduction is an important topic in Decision-Theoretic Rough Set theory. To overcome the limitations of lower-approximation-monotonicity based reduct and cost minimum based reduct, a moderate attribute reduction approach is proposed in this paper, which combines the lower approximation monotonicity criterion and cost minor criterion. Furthermore, the proposed attribute reduct is searched by solving an optimization problem, and a fusion fitness function is proposed in a generic algorithm, such that the reduct is computed in a low time complexity. Experimental analysis is included to validate the theoretic analysis and quantify the effectiveness of the proposed attribute reduction algorithm. This study indicates that the optimality is not the best and sub-optimum may be the best choice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Yao, Y.Y., Wong, S.K.M., Lingras, P.: A decision-theoretic rough set model. In: Ras, Z.W., Zemankova, M., Emrich, M.L. (eds.) Methodologies for Intelligent Systems, vol. 5, pp. 17–24. North-Holland, New York (1990)

    Google Scholar 

  2. Yao, Y.Y., Wong, S.K.M.: A decision theoretic framework for approximating concepts. Int. J. Man Mach. Stud. 37, 793–809 (1992)

    Article  Google Scholar 

  3. Jia, X.Y., Tang, Z.M., Liao, W.H., et al.: On an optimization representation of decision-theoretic rough set model. Int. J. Approx. Reason. 55, 156–166 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Li, H., Zhou, X., Zhao, J., Huang, B.: Cost-sensitive classification based on decision-theoretic rough set model. In: Li, T., Nguyen, H.S., Wang, G., Grzymala-Busse, J., Janicki, R., Hassanien, A.E., Yu, H. (eds.) RSKT 2012. LNCS, vol. 7414, pp. 379–388. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  5. Li, H., Zhou, X., Huang, B., Liu, D.: Cost-sensitive three-way decision: a sequential strategy. In: Lingras, P., Wolski, M., Cornelis, C., Mitra, S., Wasilewski, P. (eds.) RSKT 2013. LNCS, vol. 8171, pp. 325–337. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  6. Liang, D.C., Liu, D., Pedrycz, W., Hu, P.: Triangular fuzzy decision-theoretic rough sets. Int. J. Approx. Reason. 54, 1087–1106 (2013)

    Article  MATH  Google Scholar 

  7. Liang, D.C., Liu, D.: Systematic studies on three-way decisions with interval-valued decision-theoretic rough sets. Inform. Sci. 276, 186–203 (2014)

    Article  Google Scholar 

  8. Liu, D., Li, T.R., Li, H.X.: A multiple-category classification approach with decision-theoretic rough sets. Fundam. Inform. 115, 173–188 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Liu, D., Li, T.R., Liang, D.C.: Incorporating logistic regression to decision-theoretic rough sets for classification. Int. J. Approx. Reason. 55(1), 197–210 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Yu, H., Liu, Z.G., Wang, G.Y.: An automatic method to determine the number of clusters using decision-theoretic rough set. Int. J. Approx. Reason. 55, 101–115 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Qian, Y.H., Zhan, G.H., Sang, Y.L., et al.: Multigranulation decision-theoretic rough sets. Int. J. Approx. Reason. 55, 225–237 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, W.T., Xu, W.H.: Double-quantitative decision-theoretic rough set. Inform. Sci. 316, 54–67 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, W.T., Xu, W.H.: Multigranulation decision-theoretic rough set in ordered information system. Fundam. Inform. 139, 67–89 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, W., Xu, W.: Probabilistic rough set model based on dominance relation. In: Miao, D., Pedrycz, W., Slezak, D., Peters, G., Hu, Q., Wang, R. (eds.) RSKT 2014. LNCS, vol. 8818, pp. 856–864. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  15. Ju, H.R., Yang, X.B., Song, X.N., et al.: Dynamic updating multigranulation fuzzy rough set: approximations and reducts. Int. J. Mach. Learn. Cyber. 5(6), 981–990 (2014)

    Article  Google Scholar 

  16. Ju, H.R., Yang, X.B., Dou, H.L., et al.: Variable precision multigranulation rough set and attributes reduction. Trans. Rough Set 8, 52–68 (2014)

    Google Scholar 

  17. Zhao, Y., Wong, S.K.M., Yao, Y.: A note on attribute reduction in the decision-theoretic rough set model. In: Peters, J.F., Skowron, A., Chan, C.-C., Grzymala-Busse, J.W., Ziarko, W.P. (eds.) Transactions on Rough Sets XIII. LNCS, vol. 6499, pp. 260–275. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  18. Ma, X.A., Wang, G.Y., Yu, H., et al.: Decision region distribution preservation reduction in decision-theoretic rough set model. Inform. Sci. 278, 614–640 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Yao, Y.Y., Zhao, Y.: Attribute reduction in decision-theoretic rough set models. Inform. Sci. 178, 3356–3373 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, H.X., Zhou, X.Z., Zhao, J.B., et al.: Non-monotonic attribute reduction in decision-theoretic rough sets. Fundam. Inform. 126(4), 415–432 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jia, X.Y., Liao, W.H., Tang, Z.M., et al.: Minimum cost attribute reduction in decision-theoretic rough set models. Inform. Sci. 219, 151–167 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Yang, X.B., Song, X.N., Chen, Z.H., et al.: On multigranulation rough sets in incomplete information system. Int. J. Mach. Learn. Cyb. 3, 223–232 (2012)

    Article  Google Scholar 

  23. Yang, X.B., Qi, Y.S., Song, X.N., et al.: Test cost sensitive multigranulation rough set: model and minimal cost selection. Inform. Sci. 250, 184–199 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yang, X.B., Song, X.N., She, Y.H., et al.: Hierarchy on multigranulation structures: a knowledge distance approach. Int. J. Gen. Syst. 42(7), 754–773 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yao, Y.Y.: Probabilistic rough set approximations. Int. J. Approx. Reason. 49, 255–271 (2008)

    Article  MATH  Google Scholar 

  26. Yao, Y.: Three-way decision: an interpretation of rules in rough set theory. In: Wen, P., Li, Y., Polkowski, L., Yao, Y., Tsumoto, S., Wang, G. (eds.) RSKT 2009. LNCS, vol. 5589, pp. 642–649. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  27. Yao, Y., Zhou, B.: Naive Bayesian rough sets. In: Yu, J., Greco, S., Lingras, P., Wang, G., Skowron, A. (eds.) RSKT 2010. LNCS, vol. 6401, pp. 719–726. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  28. Yang, X., Qi, Y., Yu, H., Yang, J.: Want more? Pay more!. In: Cornelis, C., Kryszkiewicz, M., Ślȩzak, D., Ruiz, E.M., Bello, R., Shang, L. (eds.) RSCTC 2014. LNCS, vol. 8536, pp. 144–151. Springer, Heidelberg (2014)

    Google Scholar 

Download references

Acknowledgment

This work is supported by the Natural Science Foundation of China (Nos. 61100116, 71201076, 61170105, 61473157,71171107), Qing Lan Project of Jiangsu Province of China, and the Ph.D. Programs Foundation of Ministry of Education of China (20120091120004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaxiong Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ju, H., Yang, X., Yang, P., Li, H., Zhou, X. (2015). A Moderate Attribute Reduction Approach in Decision-Theoretic Rough Set. In: Yao, Y., Hu, Q., Yu, H., Grzymala-Busse, J.W. (eds) Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. Lecture Notes in Computer Science(), vol 9437. Springer, Cham. https://doi.org/10.1007/978-3-319-25783-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25783-9_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25782-2

  • Online ISBN: 978-3-319-25783-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics