Abstract
Attribute reduction is an important topic in Decision-Theoretic Rough Set theory. To overcome the limitations of lower-approximation-monotonicity based reduct and cost minimum based reduct, a moderate attribute reduction approach is proposed in this paper, which combines the lower approximation monotonicity criterion and cost minor criterion. Furthermore, the proposed attribute reduct is searched by solving an optimization problem, and a fusion fitness function is proposed in a generic algorithm, such that the reduct is computed in a low time complexity. Experimental analysis is included to validate the theoretic analysis and quantify the effectiveness of the proposed attribute reduction algorithm. This study indicates that the optimality is not the best and sub-optimum may be the best choice.
Similar content being viewed by others
References
Yao, Y.Y., Wong, S.K.M., Lingras, P.: A decision-theoretic rough set model. In: Ras, Z.W., Zemankova, M., Emrich, M.L. (eds.) Methodologies for Intelligent Systems, vol. 5, pp. 17–24. North-Holland, New York (1990)
Yao, Y.Y., Wong, S.K.M.: A decision theoretic framework for approximating concepts. Int. J. Man Mach. Stud. 37, 793–809 (1992)
Jia, X.Y., Tang, Z.M., Liao, W.H., et al.: On an optimization representation of decision-theoretic rough set model. Int. J. Approx. Reason. 55, 156–166 (2014)
Li, H., Zhou, X., Zhao, J., Huang, B.: Cost-sensitive classification based on decision-theoretic rough set model. In: Li, T., Nguyen, H.S., Wang, G., Grzymala-Busse, J., Janicki, R., Hassanien, A.E., Yu, H. (eds.) RSKT 2012. LNCS, vol. 7414, pp. 379–388. Springer, Heidelberg (2012)
Li, H., Zhou, X., Huang, B., Liu, D.: Cost-sensitive three-way decision: a sequential strategy. In: Lingras, P., Wolski, M., Cornelis, C., Mitra, S., Wasilewski, P. (eds.) RSKT 2013. LNCS, vol. 8171, pp. 325–337. Springer, Heidelberg (2013)
Liang, D.C., Liu, D., Pedrycz, W., Hu, P.: Triangular fuzzy decision-theoretic rough sets. Int. J. Approx. Reason. 54, 1087–1106 (2013)
Liang, D.C., Liu, D.: Systematic studies on three-way decisions with interval-valued decision-theoretic rough sets. Inform. Sci. 276, 186–203 (2014)
Liu, D., Li, T.R., Li, H.X.: A multiple-category classification approach with decision-theoretic rough sets. Fundam. Inform. 115, 173–188 (2012)
Liu, D., Li, T.R., Liang, D.C.: Incorporating logistic regression to decision-theoretic rough sets for classification. Int. J. Approx. Reason. 55(1), 197–210 (2014)
Yu, H., Liu, Z.G., Wang, G.Y.: An automatic method to determine the number of clusters using decision-theoretic rough set. Int. J. Approx. Reason. 55, 101–115 (2014)
Qian, Y.H., Zhan, G.H., Sang, Y.L., et al.: Multigranulation decision-theoretic rough sets. Int. J. Approx. Reason. 55, 225–237 (2013)
Li, W.T., Xu, W.H.: Double-quantitative decision-theoretic rough set. Inform. Sci. 316, 54–67 (2015)
Li, W.T., Xu, W.H.: Multigranulation decision-theoretic rough set in ordered information system. Fundam. Inform. 139, 67–89 (2015)
Li, W., Xu, W.: Probabilistic rough set model based on dominance relation. In: Miao, D., Pedrycz, W., Slezak, D., Peters, G., Hu, Q., Wang, R. (eds.) RSKT 2014. LNCS, vol. 8818, pp. 856–864. Springer, Heidelberg (2014)
Ju, H.R., Yang, X.B., Song, X.N., et al.: Dynamic updating multigranulation fuzzy rough set: approximations and reducts. Int. J. Mach. Learn. Cyber. 5(6), 981–990 (2014)
Ju, H.R., Yang, X.B., Dou, H.L., et al.: Variable precision multigranulation rough set and attributes reduction. Trans. Rough Set 8, 52–68 (2014)
Zhao, Y., Wong, S.K.M., Yao, Y.: A note on attribute reduction in the decision-theoretic rough set model. In: Peters, J.F., Skowron, A., Chan, C.-C., Grzymala-Busse, J.W., Ziarko, W.P. (eds.) Transactions on Rough Sets XIII. LNCS, vol. 6499, pp. 260–275. Springer, Heidelberg (2011)
Ma, X.A., Wang, G.Y., Yu, H., et al.: Decision region distribution preservation reduction in decision-theoretic rough set model. Inform. Sci. 278, 614–640 (2014)
Yao, Y.Y., Zhao, Y.: Attribute reduction in decision-theoretic rough set models. Inform. Sci. 178, 3356–3373 (2008)
Li, H.X., Zhou, X.Z., Zhao, J.B., et al.: Non-monotonic attribute reduction in decision-theoretic rough sets. Fundam. Inform. 126(4), 415–432 (2013)
Jia, X.Y., Liao, W.H., Tang, Z.M., et al.: Minimum cost attribute reduction in decision-theoretic rough set models. Inform. Sci. 219, 151–167 (2013)
Yang, X.B., Song, X.N., Chen, Z.H., et al.: On multigranulation rough sets in incomplete information system. Int. J. Mach. Learn. Cyb. 3, 223–232 (2012)
Yang, X.B., Qi, Y.S., Song, X.N., et al.: Test cost sensitive multigranulation rough set: model and minimal cost selection. Inform. Sci. 250, 184–199 (2013)
Yang, X.B., Song, X.N., She, Y.H., et al.: Hierarchy on multigranulation structures: a knowledge distance approach. Int. J. Gen. Syst. 42(7), 754–773 (2013)
Yao, Y.Y.: Probabilistic rough set approximations. Int. J. Approx. Reason. 49, 255–271 (2008)
Yao, Y.: Three-way decision: an interpretation of rules in rough set theory. In: Wen, P., Li, Y., Polkowski, L., Yao, Y., Tsumoto, S., Wang, G. (eds.) RSKT 2009. LNCS, vol. 5589, pp. 642–649. Springer, Heidelberg (2009)
Yao, Y., Zhou, B.: Naive Bayesian rough sets. In: Yu, J., Greco, S., Lingras, P., Wang, G., Skowron, A. (eds.) RSKT 2010. LNCS, vol. 6401, pp. 719–726. Springer, Heidelberg (2010)
Yang, X., Qi, Y., Yu, H., Yang, J.: Want more? Pay more!. In: Cornelis, C., Kryszkiewicz, M., Ślȩzak, D., Ruiz, E.M., Bello, R., Shang, L. (eds.) RSCTC 2014. LNCS, vol. 8536, pp. 144–151. Springer, Heidelberg (2014)
Acknowledgment
This work is supported by the Natural Science Foundation of China (Nos. 61100116, 71201076, 61170105, 61473157,71171107), Qing Lan Project of Jiangsu Province of China, and the Ph.D. Programs Foundation of Ministry of Education of China (20120091120004).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Ju, H., Yang, X., Yang, P., Li, H., Zhou, X. (2015). A Moderate Attribute Reduction Approach in Decision-Theoretic Rough Set. In: Yao, Y., Hu, Q., Yu, H., Grzymala-Busse, J.W. (eds) Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. Lecture Notes in Computer Science(), vol 9437. Springer, Cham. https://doi.org/10.1007/978-3-319-25783-9_34
Download citation
DOI: https://doi.org/10.1007/978-3-319-25783-9_34
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-25782-2
Online ISBN: 978-3-319-25783-9
eBook Packages: Computer ScienceComputer Science (R0)