[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Personalized Assistance for Dressing Users

  • Conference paper
  • First Online:
Social Robotics (ICSR 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9388))

Included in the following conference series:

Abstract

In this paper, we present an approach for a robot to provide personalized assistance for dressing a user. In particular, given a dressing task, our approach finds a solution involving manipulator motions and also user repositioning requests. Specifically, the solution allows the robot and user to take turns moving in the same space and is cognizant of the user’s limitations. To accomplish this, a vision module monitors the human’s motion, determines if he is following the repositioning requests, and infers mobility limitations when he cannot. The learned constraints are used during future dressing episodes to personalize the repositioning requests. Our contributions include a turn-taking approach to human-robot coordination for the dressing problem and a vision module capable of learning user limitations. After presenting the technical details of our approach, we provide an evaluation with a Baxter manipulator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anjum, M.L., Ahmad, O., Rosa, S., Yin, J., Bona, B.: Skeleton tracking based complex human activity recognition using kinect camera. In: Beetz, M., Johnston, B., Williams, M.-A. (eds.) ICSR 2014. LNCS, vol. 8755, pp. 23–33. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  2. Bacchus, F., Kabanza, F.: Planning for temporally extended goals. Annals of Mathematics and Artificial Intelligence 22(1–2), 5–27 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bai, Y., Liu, C.K.: Coupling cloth and rigid bodies for dexterous manipulation. In: Motion in Games (2014)

    Google Scholar 

  4. Bruce, J., Veloso, M.M.: Real-time randomized path planning for robot navigation. In: Kaminka, G.A., Lima, P.U., Rojas, R. (eds.) RoboCup 2002. LNCS (LNAI), vol. 2752, pp. 288–295. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Colomé, A., Planells, A., Torras, C.: A friction-model-based framework for reinforcement learning of robotic tasks in non-rigid environments. In: ICRA (2015)

    Google Scholar 

  6. Fikes, R.E., Hart, P.E., Nilsson, N.J.: Learning and executing generalized robot plans. Artificial intelligence 3, 251–288 (1972)

    Article  Google Scholar 

  7. Kita, Y., Neo, E., Ueshiba, T., Kita, N.: Clothes handling using visual recognition in cooperation with actions. In: IROS (2010)

    Google Scholar 

  8. Kuffner, J.J., LaValle, S.M.: RRT-connect: an efficient approach to single-query path planning. In: ICRA (2000)

    Google Scholar 

  9. Maitin-Shepard, J., Cusumano-Towner, M., Lei, J., Abbeel, P.: Cloth grasp point detection based on multiple-view geometric cues with application to robotic towel folding. In: ICRA (2010)

    Google Scholar 

  10. Matsubara, T., Shinohara, D., Kidode, M.: Reinforcement learning of a motor skill for wearing a t-shirt using topology coordinates. Advanced Robotics 27(7), 513–524 (2013)

    Article  Google Scholar 

  11. Melo, F.S., Veloso, M.: Decentralized mdps with sparse interactions. Artificial Intelligence 175(11), 1757–1789 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ferreira, B.Q., Gomes, J., Costeira, J.P.: A unified approach for hybrid source localization based on ranges and video. In: ICASSP (2015)

    Google Scholar 

  13. Tapus, A., Mataric, M., Scasselati, B.: Socially assistive robotics [grand challenges of robotics]. IEEE Robotics Automation Magazine 14(1), 35–42 (2007)

    Article  Google Scholar 

  14. Twardon, L., Ritter, H.J.: Interaction skills for a coat-check robot: Identifying and handling the boundary components of clothes. In: ICRA (2015)

    Google Scholar 

  15. Yamazaki, K., Oya, R., Nagahama, K., Okada, K., Inaba, M.: Bottom dressing by a life-sized humanoid robot provided failure detection and recovery functions. In: System Integration (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven D. Klee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Klee, S.D., Ferreira, B.Q., Silva, R., Costeira, J.P., Melo, F.S., Veloso, M. (2015). Personalized Assistance for Dressing Users. In: Tapus, A., André, E., Martin, JC., Ferland, F., Ammi, M. (eds) Social Robotics. ICSR 2015. Lecture Notes in Computer Science(), vol 9388. Springer, Cham. https://doi.org/10.1007/978-3-319-25554-5_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25554-5_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25553-8

  • Online ISBN: 978-3-319-25554-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics