[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Novel Supervised CCA Algorithm for Multiview Data Representation and Recognition

  • Conference paper
  • First Online:
Biometric Recognition (CCBR 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9428))

Included in the following conference series:

Abstract

In this paper, we propose a novel supervised CCA method for multiview dimensionality reduction and classification, which simultaneously considers the class information of within-view and between-view training samples. The proposed method is applied to face and general object image recognition. The experimental results on the AT&T and Yale-B face image databases and the COIL-20 object image database show our proposed algorithm provides better recognition results on the whole than existing multiview feature extraction methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hotelling, H.: Relations between Two Sets of Variates. Biometrika 28, 321–377 (1936)

    Article  MATH  Google Scholar 

  2. Sun, Q.-S., Zeng, S.-G., Liu, Y., Heng, P.-A., Xia, D.-S.: A New Method of Feature Fusion and Its Application in Image Recognition. Pattern Recognition 38, 2437–2448 (2005)

    Article  Google Scholar 

  3. Yuan, Y.-H., Sun, Q.-S., Ge, H.-W.: Fractional-order Embedding Canonical Correlation Analysis and Its Applications to Multi-view Dimensionality Reduction and Recognition. Pattern Recognition 47, 1411–1424 (2014)

    Article  Google Scholar 

  4. Melzer, T., Reiter, M., Bischof, H.: Appearance Models Based on Kernel Canonical Correlation Analysis. Pattern Recognition 36, 1961–1971 (2003)

    Article  MATH  Google Scholar 

  5. Sun, T.K., Chen, S.C.: Locality Preserving CCA with Applications to Data Visualization and Pose Estimation. Image and Vision Computing 25(5), 531–543 (2007)

    Article  MATH  Google Scholar 

  6. Sun, Q.-S., Liu, Z.-D., Heng, P.-A., Xia, D.-S.: A Theorem on the Generalized Canonical Projective Vectors. Pattern Recognition 38, 449–452 (2005)

    Article  MATH  Google Scholar 

  7. Kim, T.-K., Kittler, J., Cipolla, R.: Discriminative Learning and Recognition of Image Set Class Using Canonical Correlations. IEEE Trans. on PAMI 29, 1005–1018 (2007)

    Article  Google Scholar 

  8. Peng, Y., Zhang, D., Zhang, J.: A New Canonical Correlation Analysis Algorithm with Local Discrimination. Neural Processing Letters 31, 1–15 (2010)

    Article  Google Scholar 

  9. Sun, T.K., Chen, S.C.: Class Label versus Sample Label-based CCA. Applied Mathematics and Computation 185, 272–283 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Sun, T.K., Chen, S.C., Yang, J.Y., Shi, P.F.: A novel method of combined feature extraction for recognition. In: Proceedings of IEEE International Conference on Data Mining, pp. 1043–1048 (2008)

    Google Scholar 

  11. Sharma, A., Kumar, A., Daume III, H., Jacobs, D.W.: Generalized multiview analysis: a discriminative latent space. In: Proc. IEEE Conf. on CVPR, pp. 2160–2167 (2012)

    Google Scholar 

  12. Kan, M., Shan, S., Zhang, H., Lao, S., Chen, X.: Multi-view discriminant analysis. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part I. LNCS, vol. 7572, pp. 808–821. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  13. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proc. IEEE Conf. on CVPR, pp. 886–893 (2005)

    Google Scholar 

  14. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution Gray-scale and Rotation Invariant Texture Classification with Local Binary Patterns. IEEE Trans. on PAMI 24, 971–987 (2002)

    Article  Google Scholar 

  15. Georghiades, A., Belhumeur, P., Kriegman, D.: From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose. IEEE Trans. on PAMI 23, 643–660 (2001)

    Article  Google Scholar 

  16. Lee, K.-C., Ho, J., Kriegman, D.: Acquiring Linear Subspaces for Face Recognition under Variable Lighting. IEEE Trans. on PAMI 27, 684–698 (2005)

    Article  Google Scholar 

  17. Nene, S.A., Nayar, S.K., Murase, H.: Columbia Object Image Library (COIL-20), Technical Report CUCS-005-96, February 1996

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunhao Yuan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Yuan, Y., Lu, P., Xiao, Z., Liu, J., Wu, X. (2015). A Novel Supervised CCA Algorithm for Multiview Data Representation and Recognition. In: Yang, J., Yang, J., Sun, Z., Shan, S., Zheng, W., Feng, J. (eds) Biometric Recognition. CCBR 2015. Lecture Notes in Computer Science(), vol 9428. Springer, Cham. https://doi.org/10.1007/978-3-319-25417-3_82

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25417-3_82

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25416-6

  • Online ISBN: 978-3-319-25417-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics