Abstract
The Chinese Framework of Semantic Taxonomy and Description (FSTD) is a linguistic resource that stores lexical and predicate-argument semantics about events or states in Chinese text, developed with the application of knowledge acquisition from Chinese text in mind. In this paper we build a web information extraction system, called NkiExtractor, to evaluate FSTD experimentally. We use two metrics: grammar coverage measures whether there is a semantic category of FSTD that corresponds to an event description in text, and extraction precision measures whether the correct predicate-argument structure can be extracted from text. Experimental results show that FSTD is a fairly comprehensive and effective resource for knowledge acquisition. We also discuss future work for expanding FSTD and improving extraction precision of NkiExtractor.
The work is supported by NSFC grants (No. 91224006, No. 61173063, and No. 61203284) and a MOST grant (No. 201303107).
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chinese framenet. http://sccfn.sxu.edu.cn/portal-en/home.aspx
Read the web project. http://rtw.ml.cmu.edu/rtw/
KnowItAll project. http://openie.allenai.org/
Baker, C.F., Fillmore, C.J., Lowe, J.B.: The berkeley framenet project. In: Proceedings of the 17th International Conference on Computational Linguistics, vol. 1, pp. 86–90. Association for Computational Linguistics (1998)
Banko, M., Cafarella, M.J., Soderland, S., Broadhead, M., Etzioni, O.: Open information extraction for the web. IJCAI 7, 2670–2676 (2007)
Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Jr., E.R.H., Mitchell, T.M.: Toward an architecture for never-ending language learning. In: Proceedings of the Twenty-Fourth Conference on Artificial Intelligence (AAAI 2010) (2010)
Christensen, J., Soderland, S., Etzioni, O., et al.: An analysis of open information extraction based on semantic role labeling. In: Proceedings of the Sixth International Conference on Knowledge Capture, pp. 113–120. ACM (2011)
Das, D., Chen, D., Martins, A.F., Schneider, N., Smith, N.A.: Frame-semantic parsing. Computational Linguistics 40(1), 9–56 (2014)
Fader, A., Soderland, S., Etzioni, O.: Identifying relations for open information extraction. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 1535–1545. Association for Computational Linguistics (2011)
Fillmore, C.J., Johnson, C.R., Petruck, M.R.: Background to framenet. International Journal of Lexicography 16(3), 235–250 (2003)
Mitchell, T., Cohen, W., Hruschka, E., Talukdar, P., Betteridge, J., Carlson, A., Dalvi, B., Gardner, M., Kisiel, B., Krishnamurthy, J., Lao, N., Mazaitis, K., Mohamed, T., Nakashole, N., Platanios, E., Ritter, A., Samadi, M., Settles, B., Wang, R., Wijaya, D., Gupta, A., Chen, X., Saparov, A., Greaves, M., Welling, J.: Never-ending learning. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI 2015) (2015)
Schmitz, M., Bart, R., Soderland, S., Etzioni, O., et al.: Open language learning for information extraction. In: Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pp. 523–534. Association for Computational Linguistics (2012)
Wu, F., Weld, D.S.: Open information extraction using wikipedia. In: Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, pp. 118–127. Association for Computational Linguistics (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Zang, L. et al. (2015). A Chinese Framework of Semantic Taxonomy and Description: Preliminary Experimental Evaluation Using Web Information Extraction. In: Zhang, S., Wirsing, M., Zhang, Z. (eds) Knowledge Science, Engineering and Management. KSEM 2015. Lecture Notes in Computer Science(), vol 9403. Springer, Cham. https://doi.org/10.1007/978-3-319-25159-2_25
Download citation
DOI: https://doi.org/10.1007/978-3-319-25159-2_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-25158-5
Online ISBN: 978-3-319-25159-2
eBook Packages: Computer ScienceComputer Science (R0)