[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Chinese Framework of Semantic Taxonomy and Description: Preliminary Experimental Evaluation Using Web Information Extraction

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2015)

Abstract

The Chinese Framework of Semantic Taxonomy and Description (FSTD) is a linguistic resource that stores lexical and predicate-argument semantics about events or states in Chinese text, developed with the application of knowledge acquisition from Chinese text in mind. In this paper we build a web information extraction system, called NkiExtractor, to evaluate FSTD experimentally. We use two metrics: grammar coverage measures whether there is a semantic category of FSTD that corresponds to an event description in text, and extraction precision measures whether the correct predicate-argument structure can be extracted from text. Experimental results show that FSTD is a fairly comprehensive and effective resource for knowledge acquisition. We also discuss future work for expanding FSTD and improving extraction precision of NkiExtractor.

The work is supported by NSFC grants (No. 91224006, No. 61173063, and No. 61203284) and a MOST grant (No. 201303107).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chinese framenet. http://sccfn.sxu.edu.cn/portal-en/home.aspx

  2. Framenet. https://framenet.icsi.berkeley.edu/fndrupal/home

  3. Read the web project. http://rtw.ml.cmu.edu/rtw/

  4. KnowItAll project. http://openie.allenai.org/

  5. Baker, C.F., Fillmore, C.J., Lowe, J.B.: The berkeley framenet project. In: Proceedings of the 17th International Conference on Computational Linguistics, vol. 1, pp. 86–90. Association for Computational Linguistics (1998)

    Google Scholar 

  6. Banko, M., Cafarella, M.J., Soderland, S., Broadhead, M., Etzioni, O.: Open information extraction for the web. IJCAI 7, 2670–2676 (2007)

    Google Scholar 

  7. Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Jr., E.R.H., Mitchell, T.M.: Toward an architecture for never-ending language learning. In: Proceedings of the Twenty-Fourth Conference on Artificial Intelligence (AAAI 2010) (2010)

    Google Scholar 

  8. Christensen, J., Soderland, S., Etzioni, O., et al.: An analysis of open information extraction based on semantic role labeling. In: Proceedings of the Sixth International Conference on Knowledge Capture, pp. 113–120. ACM (2011)

    Google Scholar 

  9. Das, D., Chen, D., Martins, A.F., Schneider, N., Smith, N.A.: Frame-semantic parsing. Computational Linguistics 40(1), 9–56 (2014)

    Article  Google Scholar 

  10. Fader, A., Soderland, S., Etzioni, O.: Identifying relations for open information extraction. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 1535–1545. Association for Computational Linguistics (2011)

    Google Scholar 

  11. Fillmore, C.J., Johnson, C.R., Petruck, M.R.: Background to framenet. International Journal of Lexicography 16(3), 235–250 (2003)

    Article  Google Scholar 

  12. Mitchell, T., Cohen, W., Hruschka, E., Talukdar, P., Betteridge, J., Carlson, A., Dalvi, B., Gardner, M., Kisiel, B., Krishnamurthy, J., Lao, N., Mazaitis, K., Mohamed, T., Nakashole, N., Platanios, E., Ritter, A., Samadi, M., Settles, B., Wang, R., Wijaya, D., Gupta, A., Chen, X., Saparov, A., Greaves, M., Welling, J.: Never-ending learning. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI 2015) (2015)

    Google Scholar 

  13. Schmitz, M., Bart, R., Soderland, S., Etzioni, O., et al.: Open language learning for information extraction. In: Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pp. 523–534. Association for Computational Linguistics (2012)

    Google Scholar 

  14. Wu, F., Weld, D.S.: Open information extraction using wikipedia. In: Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, pp. 118–127. Association for Computational Linguistics (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangjun Zang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Zang, L. et al. (2015). A Chinese Framework of Semantic Taxonomy and Description: Preliminary Experimental Evaluation Using Web Information Extraction. In: Zhang, S., Wirsing, M., Zhang, Z. (eds) Knowledge Science, Engineering and Management. KSEM 2015. Lecture Notes in Computer Science(), vol 9403. Springer, Cham. https://doi.org/10.1007/978-3-319-25159-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25159-2_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25158-5

  • Online ISBN: 978-3-319-25159-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics