Abstract
This paper presents a novel technique for process discovery. In contrast to the current trend, which only considers an event log for discovering a process model, we assume two additional inputs: an independence relation on the set of logged activities, and a collection of negative traces. After deriving an intermediate net unfolding from them, we perform a controlled folding giving rise to a Petri net which contains both the input log and all independence-equivalent traces arising from it. Remarkably, the derived Petri net cannot execute any trace from the negative collection. The entire chain of transformations is fully automated. A tool has been developed and experimental results are provided that witness the significance of the contribution of this paper.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Since Definition 9 refers to the events that generates the local configurations of the negative traces, the folding equivalence must be defined over the nodes of and not those of .
- 2.
Tool and benchmarks: http://lipn.univ-paris13.fr/~rodriguez/exp/atva15/.
References
van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhancement of Business Processes. Springer, New York (2011)
van der Aalst, W.M.P.: On the representational bias in process mining. In: 20th IEEE International Workshops on Enabling Technologies: Infrastructures for Collaborative Enterprises, WETICE 2011, France, pp. 2–7 (2011)
Ferreira, H., Ferreira, D.: An integrated life cycle for workflow management based on learning and planning. Int. J. Coop. Inf. Syst. 15(4), 485–505 (2006)
Lamma, E., Mello, P., Riguzzi, F., Storari, S.: Applying inductive logic programming to process mining. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 132–146. Springer, Heidelberg (2008)
Goedertier, S., Martens, D., Vanthienen, J., Baesens, B.: Robust process discovery with artificial negative events. J. Mach. Learn. Res. 10, 1305–1340 (2009)
Mazurkiewicz, A.W.: Trace theory. In: Petri Nets: Central Models and Their Properties, Advances in Petri Nets 1986, Part II, Proceedings of an Advanced Course, Bad Honnef, pp. 279–324 (1986)
Dumas, M., García-Bañuelos, L.: Process mining reloaded: event structures as a unified representation of process models and event logs. In: Devillers, R., Valmari, A. (eds.) PETRI NETS 2015. LNCS, vol. 9115, pp. 33–48. Springer, Heidelberg (2015)
Ponce-de-León, H., Rodríguez, C., Carmona, J., Heljanko, K., Haar, S.: Unfolding-based process discovery. CoRR abs/1507.02744 (2015)
Esparza, J., Römer, S., Vogler, W.: An improvement of McMillan’s unfolding algorithm. Formal Methods Syst. Des. 20(3), 285–310 (2002)
Nielsen, M., Plotkin, G.D., Winskel, G.: Petri nets, event structures and domains, part I. Theor. Comput. Sci. 13, 85–108 (1981)
Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: Quality dimensions in process discovery: The importance of fitness, precision, generalization and simplicity. Int. J. Coop. Inf. Syst. 23(1), 1–39 (2014)
Winskel, G.: Categories of models for concurrency. In: Brookes, S.D., Roscoe, A.W., Winskel, G. (eds.) Seminar on Concurrency. LNCS. Springer, Heidelberg (1984)
Fahland, D., van der Aalst, W.M.P.: Simplifying discovered process models in a controlled manner. Inf. Syst. 38(4), 585–605 (2013)
van den Broucke, S.K.L.M., Weerdt, J.D., Vanthienen, J., Baesens, B.: Determining process model precision and generalization with weighted artificial negative events. IEEE Trans. Knowl. Data Eng. 26(8), 1877–1889 (2014)
Nieuwenhuis, R., Oliveras, A.: On SAT modulo theories and optimization problems. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 156–169. Springer, Heidelberg (2006)
The Model Checking Contest: Website. http://mcc.lip6.fr/
van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Process discovery using integer linear programming. In: van Hee, K.M., Valk, R. (eds.) PETRI NETS 2008. LNCS, vol. 5062, pp. 368–387. Springer, Heidelberg (2008)
Adriansyah, A., Munoz-Gama, J., Carmona, J., van Dongen, B.F., van der Aalst, W.M.P.: Measuring precision of modeled behavior. Inf. Syst. E-Bus. Manag. 13(1), 37–67 (2015)
Adriansyah, A.: Aligning observed and modeled behavior. Ph.D. thesis, Technische Universiteit Eindhoven (2014)
Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Synthesis of petri nets from finite partial languages. Fundam. Inform. 88(4), 437–468 (2008)
Bergenthum, R., Desel, J., Mauser, S., Lorenz, R.: Construction of process models from example runs. In: Jensen, K., van der Aalst, W.M.P. (eds.) Transactions on Petri Nets and Other Models of Concurrency II. LNCS, vol. 5460, pp. 243–259. Springer, Heidelberg (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Ponce-de-León, H., Rodríguez, C., Carmona, J., Heljanko, K., Haar, S. (2015). Unfolding-Based Process Discovery. In: Finkbeiner, B., Pu, G., Zhang, L. (eds) Automated Technology for Verification and Analysis. ATVA 2015. Lecture Notes in Computer Science(), vol 9364. Springer, Cham. https://doi.org/10.1007/978-3-319-24953-7_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-24953-7_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-24952-0
Online ISBN: 978-3-319-24953-7
eBook Packages: Computer ScienceComputer Science (R0)