[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Oddness-Based Classifiers for Boolean or Numerical Data

  • Conference paper
  • First Online:
KI 2015: Advances in Artificial Intelligence (KI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9324))

  • 1387 Accesses

Abstract

The paper proposes an oddness measure for estimating the extent to which a new item is at odds with a class. Then a simple classification procedure based on the minimization of oddness with respect to the different classes is proposed. Experiments on standard benchmarks with Boolean or numerical data provide good results. The global oddness measure is based on the estimation of the oddness of the new item with respect to the subsets of the classes having a given size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Benedetto, D., Caglioti, E., Loreto, V.: Language trees and zipping. Phys. Review Lett. 88(4) (2002)

    Google Scholar 

  2. Bounhas, M., Prade, H., Richard, G.: Analogical classification: handling numerical data. In: Straccia, U., Calì, A. (eds.) SUM 2014. LNCS, vol. 8720, pp. 66–79. Springer, Heidelberg (2014)

    Google Scholar 

  3. Bounhas, M., Prade, H., Richard, G.: A new view of conformity and its application to classification. In: Destercke, S., Denoeux, T. (eds.) ECSQARU 2015. LNAI, vol. 9161. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  4. Bounhas, M., Prade, H., Richard, G.: Analogical classification: a new way to deal with examples. In: ECAI 2014–21st European Conference on Artificial Intelligence, 18–22 August 2014, Prague, Czech Republic. Frontiers in Artificial Intelligence and Applications, vol. 263, pp. 135–140. IOS Press (2014)

    Google Scholar 

  5. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Mertz, J., Murphy, P.: Uci repository of machine learning databases (2000). ftp://ftp.ics.uci.edu/pub/machine-learning-databases

  7. Miclet, L., Bayoudh, S., Delhay, A.: Analogical dissimilarity: definition, algorithms and two experiments in machine learning. JAIR 32, 793–824 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Prade, H., Richard, G.: From analogical proportion to logical proportions. Logica Universalis 7(4), 441–505 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Prade, H., Richard, G.: Homogenous and heterogeneous logical proportions. IfCoLog J. of Logics and their Applications 1(1), 1–51 (2014)

    Google Scholar 

  10. Sculley, D., Brodley, C.E.: Compression and machine learning: a new perspective on feature space vectors. In: Proc. of the Data Compressing Conference DCC, pp. 332–341. IEEE (2006)

    Google Scholar 

  11. Vovk, V., Gammerman, A., Saunders, C.: Machine-learning applications of algorithmic randomness. Int. Conf. on Machine Learning, pp. 444–453 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myriam Bounhas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Bounhas, M., Prade, H., Richard, G. (2015). Oddness-Based Classifiers for Boolean or Numerical Data. In: Hölldobler, S., , Peñaloza, R., Rudolph, S. (eds) KI 2015: Advances in Artificial Intelligence. KI 2015. Lecture Notes in Computer Science(), vol 9324. Springer, Cham. https://doi.org/10.1007/978-3-319-24489-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24489-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24488-4

  • Online ISBN: 978-3-319-24489-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics