[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Saliency-Guided Video Deinterlacing

  • Conference paper
  • First Online:
Computational Collective Intelligence

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9330))

Abstract

Video deinterlacing is a technique wherein the interlaced video format is converted into progressive scan format for nowadays display devices. In this paper a spatial saliency-guided motion compensated deinterlacing method is proposed: our algorithm classifies the field according to its texture and viewer’s region of interest and adapts the motion estimation and compensation, as well as the saliency-guided interpolation in order to ensure high quality frame reconstruction. The experimental results show significant improvement of the proposed method over classical motion compensated and adaptive deinterlacing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Haan, G.D., Bellers, E.B.: Deinterlacing - An overview. Proceedings of the IEEE 86(9), 1839–1857 (1998)

    Article  Google Scholar 

  2. Atkins, C.B.: Optical image scaling using pixel classification. In: International Conference on Image Processing (2001)

    Google Scholar 

  3. Harel, J., Koch, C., Perona, P.: Graph-based visual saliency. In: Advances in Neural Information Processing Systems, pp. 545–552 (2006)

    Google Scholar 

  4. Liu, C.: Beyond Pixels: Exploring new Representations and applications for Motion Analysis, Doctoral Thesis, MIT, May 2009

    Google Scholar 

  5. Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17, 185–203 (1981)

    Article  Google Scholar 

  6. Trocan, M., Mikovicova, B., Zhanguzin, D.: An Adaptive Motion Compensated Approach for Video Deinterlacing. Multimedia Tools and Applications 61(3), 819–837 (2011)

    Article  Google Scholar 

  7. Itti, L., Koch, C., Niebur, E.: A Model of Saliency-based Visual Attention for Rapid Scene Analysis. IEEE Trans. on PAMI 20(11), 1254–1259 (1998)

    Article  Google Scholar 

  8. Itti, L.: Automatic Foveation for Video Compression Using a Neurobiological Model of Visual Attention. IEEE Trans. on Image Processing 13(10), 1304–1318 (2004)

    Article  Google Scholar 

  9. Rahtu, E., Kannala, J., Salo, M., Heikkilä, J.: Segmenting salient objects from images and videos. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 366–379. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Zhang, L., Tong, M., et al.: SUN: a Bayesian Framework for Saliency using Natural Statistics. Journal of Vision 9(7), 1–20 (2008)

    Google Scholar 

  11. Lu, S., Lim, J.-H.: Saliency modeling from image histograms. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VII. LNCS, vol. 7578, pp. 321–332. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  12. Seo, H.-J., Milanfar, P.: Static and Space-Time Visual Saliency Detection by Self-Resemblance. Journal of Vision 9(12), 1–12 (2009)

    Article  Google Scholar 

  13. Itti, L., Koch, C.: Computational Modeling of Visual Attention. Nature Reviews Neuroscience 2(3), 194–203 (2001)

    Article  Google Scholar 

  14. Zhanguzin, D., Trocan, M., Mikovicova, B.: An edge-preserving motion-compensated approach for video deinterlacing. In: IEEE/IET/BCS3rd International Workshop on Future Multimedia Networking, June 2010

    Google Scholar 

  15. Trocan, M., Mikovicova, B.: Smooth motion compensated video deinterlacing. In: 7th International Symposium on Image and Signal Processing and Analysis (ISPA), September 2011

    Google Scholar 

  16. Chen, Y., Tai, S.: True motion-compensated de-interlacing algorithm. IEEE Transactions on Circuits and Systems for Video Technology 19(10), 1489–1498 (2009)

    Google Scholar 

  17. Wang, S.-B., Chang, T.-S.: Adaptive de-interlacing with robust overlapped block motion compensation. IEEE Transactions on Circuits and Systems for Video Technology 18(10), 1437–1440 (2008)

    Article  Google Scholar 

  18. Lee, G.G., Wang, M.J., Li, H.T., Lin, H.Y.: A motion-adaptive deinterlacer via hybrid motion detection and edge-pattern recognition. EURASIP Journal on Image and Video Processing (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Trocan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Trocan, M., Coudoux, FX. (2015). Saliency-Guided Video Deinterlacing. In: Núñez, M., Nguyen, N., Camacho, D., Trawiński, B. (eds) Computational Collective Intelligence. Lecture Notes in Computer Science(), vol 9330. Springer, Cham. https://doi.org/10.1007/978-3-319-24306-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24306-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24305-4

  • Online ISBN: 978-3-319-24306-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics