[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Multi-start Differential Evolution Approach in the Process of Finding Equilibrium Points in the Covariant Games

  • Conference paper
  • First Online:
Computational Collective Intelligence

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9330))

  • 2287 Accesses

Abstract

In this article we present the application of the Differential Evolution algorithm to the problem of finding optimal strategies in the covariant games. Covariant game is the class of games in the normal form, in which there is at least one Nash equilibrium, and some payoffs of players may be in some way correlated. We used the concept, that there is possibility, that the approximate solution of the game exists, when players use only the small subset of strategies. The Differential Evolution algorithm is presented as the multi-start method, in which sampling of the solution is used. If preliminary estimation of the solution is not satisfactory, the new subset of strategies for all players is selected and the new population of individuals is created.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bräysy, O., Haslea, G., Dullaertb, W.: A multi-start local search algorithm for the vehicle routing problem with time windows. European Journal of Operational Research 159(3), 586–605 (2004)

    Article  MathSciNet  Google Scholar 

  2. Daskalakis, C., Mehta, A., Papadimitriou, C.: A note on approximate Nash equilibria. Journal Theoretical Computer Science 410, 1581–1588 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dickhaut, J., Kaplan, T.: A program for finding Nash equilibria, Working papers, University of Minnesota, Department of Economics (1991)

    Google Scholar 

  4. Lemke, C.E., Howson, J.T.: Equilibrium Points of Bimatrix Games. Society for Industrial and Applied Mathematics 12, 413–423 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boese, K.D., Kahng, A.B., Sudhakar, M.: A new adaptive multi-start technique for combinatorial global optimizations. Operations Research Letters 16(2), 101–113 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kontogiannis, S.C., Panagopoulou, P.N., Spirakis, P.G.: Polynomial algorithms for approximating Nash equilibria of bimatrix games. Journal Theoretical Computer Science 410, 1599–1606 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Lampinen, J., Zelinka, I.: Mixed variable non-linear optimization by differential evolution. Proceedings of Nostradamus (1999)

    Google Scholar 

  8. Lampinen, J., Zelinka, I.: On stagnation of the differential evolution algorithm. In: Proceedings of Mendel, 6th International Mendel Conference on Soft Computing (2000)

    Google Scholar 

  9. Lipton, R., Markakis, E., Mehta, A.: Playing large games using simple strategies, pp. 36–41 (2003)

    Google Scholar 

  10. Marchiori, E.: Genetic, iterated and multistart local search for the maximum clique problem. In: Cagnoni, S., Gottlieb, J., Hart, E., Middendorf, M., Raidl, G.R. (eds.) EvoWorkshops 2002. LNCS, vol. 2279, pp. 112–121. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  11. McKelvey, R.D., McLennan, A.M., Turocy, T.L.: Gambit: Software Tools for Game Theory, Version 0.2010.09.01 (2010). http://www.gambit-project.org

  12. Nash, J.F.: Non-cooperative games. Annals of Mathematics 54(2), 286–295 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  13. Nudelman, E., Wortman, J., Shoham, Y., Leyton-Brown, K.: Run the GAMUT: a comprehensive approach to evaluating game-theoretic algorithms. In: Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems, vol. 2 (2004)

    Google Scholar 

  14. Piccioni, M.: A Combined Multistart-Annealing Algorithm for Continuous Global Optimization, Institute for Systems Research Technical Reports (1987)

    Google Scholar 

  15. Rubinstein, A.: Modelling Bounded Rationality. MIT Press (1998)

    Google Scholar 

  16. Stacey, A.: Particle swarm optimization with mutation. In: The 2003 Congress on Evolutionary Computation, vol. 2, pp. 1425–1430 (2003)

    Google Scholar 

  17. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11(4), 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Storn, R.: On the usage of differential evolution for function optimization. In: NAFIPS 1996, pp. 519–523. IEEE (1996)

    Google Scholar 

  19. Tsaknakis, H., Spirakis, P.G.: An optimization approach for approximate nash equilibria. In: Deng, X., Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858, pp. 42–56. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  20. Zhang, Y.-W., Wang, L., Wu, Q.-D.: Mortal particles: particle swarm optimization with life span. In: Tan, Y., Shi, Y., Chai, Y., Wang, G. (eds.) ICSI 2011, Part I. LNCS, vol. 6728, pp. 138–146. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Przemyslaw Juszczuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Juszczuk, P. (2015). Multi-start Differential Evolution Approach in the Process of Finding Equilibrium Points in the Covariant Games. In: Núñez, M., Nguyen, N., Camacho, D., Trawiński, B. (eds) Computational Collective Intelligence. Lecture Notes in Computer Science(), vol 9330. Springer, Cham. https://doi.org/10.1007/978-3-319-24306-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24306-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24305-4

  • Online ISBN: 978-3-319-24306-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics