Abstract
Kernel methods provide a convenient way to apply a wide range of learning techniques to complex and structured data by shifting the representational problem from one of finding an embedding of the data to that of defining a positive semi-definite kernel. One problem with the most widely used kernels is that they neglect the locational information within the structures, resulting in less discrimination. Correspondence-based kernels, on the other hand, are in general more discriminating, at the cost of sacrificing positive-definiteness due to their inability to guarantee transitivity of the correspondences between multiple graphs. In this paper we adopt a general framework for the projection of (relaxed) correspondences onto the space of transitive correspondences, thus transforming any given matching algorithm onto a transitive multi-graph matching approach. The resulting transitive correspondences can then be used to provide a kernel that both maintains locational information and is guaranteed to be positive-definite. Experimental evaluation validates the effectiveness of the kernel for several structural classification tasks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Siddiqi, K., Shokoufandeh, A., Dickinson, S., Zucker, S.: Shock graphs and shape matching. Int. J. Comput. Vis. 35, 13–32 (1999)
Jeong, H., Tombor, B., Albert, R., Oltvai, Z., Barabási, A.: The large-scale organization of metabolic networks. Nature 407, 651–654 (2000)
Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., Sakaki, Y.: A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. 98, 4569 (2001)
Kalapala, V., Sanwalani, V., Moore, C.: The structure of the united states road network. Preprint, University of New Mexico (2003)
Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pattern recognition. IJPRAI 18, 265–298 (2004)
Luo, B., Wilson, R.C., Hancock, E.R.: Spectral embedding of graphs. Pattern Recogn. 36, 2213–2230 (2003)
Wilson, R.C., Hancock, E.R., Luo, B.: Pattern vectors from algebraic graph theory. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1112–1124 (2005)
Gasparetto, A., Minello, G., Torsello, A.: A non-parametric spectral model for graph classification. In: Proceedings of the International Conference on Pattern Recognition Applications and Methods, pp. 312–319 (2015)
Torsello, A., Gasparetto, A., Rossi, L., Bai, L., Hancock, E.R.: Transitive state alignment for the quantum Jensen-Shannon kernel. In: Fränti, P., Brown, G., Loog, M., Escolano, F., Pelillo, M. (eds.) S+SSPR 2014. LNCS, vol. 8621, pp. 22–31. Springer, Heidelberg (2014)
Livi, L., Rizzi, A.: The graph matching problem. Pattern Anal. Appl. 16, 253–283 (2013)
Scholkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2001)
Gärtner, T., Flach, P.A., Wrobel, S.: On graph kernels: hardness results and efficient alternatives. In: Schölkopf, B., Warmuth, M.K. (eds.) COLT/Kernel 2003. LNCS (LNAI), vol. 2777, pp. 129–143. Springer, Heidelberg (2003)
Haussler, D.: Convolution kernels on discrete structures. Technical Report UCS-CRL-99-10, University of California at Santa Cruz, Santa Cruz, CA, USA (1999)
Kashima, H., Tsuda, K., Inokuchi, A.: Marginalized kernels between labeled graphs. In: ICML, pp. 321–328 (2003)
Borgwardt, K.M., Kriegel, H.P.: Shortest-path kernels on graphs. In: Proceedings of the Fifth IEEE International Conference on Data Mining (ICDM 2005), Washington, DC, USA, pp. 74–81. IEEE Computer Society (2005)
Shervashidze, N., Schweitzer, P., van Leeuwen, E.J., Mehlhorn, K., Borgwardt, K.M.: Weisfeiler-lehman graph kernels. J. Mach. Learn. Res. 12, 2539–2561 (2011)
Kriege, N., Mutzel, P.: Subgraph matching kernels for attributed graphs. In: ICML. icml.cc/Omnipress (2012)
Neumann, M., Patricia, N., Garnett, R., Kersting, K.: Efficient graph kernels by randomization. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML PKDD 2012, Part I. LNCS, vol. 7523, pp. 378–393. Springer, Heidelberg (2012)
Ong, C.S., Canu, S., Smola, A.J.: Learning with non-positive kernels. In: Proceedings of the 21st International Conference on Machine Learning (ICML), pp. 639–646 (2004)
Jain, B.J., Geibel, Wysotzki, F.: SVM learning with the SH inner product. In: 12th European Symposium on Artificial Neural Networks, Bruges, Belgium
Jain, B.J., Geibel, P., Wysotzki, F.: SVM learning with the Schur-Hadamard inner product for graphs. Neurocomputing 64, 93–105 (2005)
Schietgat, L., Ramon, J., Bruynooghe, M., Blockeel, H.: An efficiently computable graph-based metric for the classification of small molecules. In: Boulicaut, J.-F., Berthold, M.R., Horváth, T. (eds.) DS 2008. LNCS (LNAI), vol. 5255, pp. 197–209. Springer, Heidelberg (2008)
Mohr, J., Jain, B.J., Sutter, A., ter Laak, A., Steger-Hartmann, T., Heinrich, N., Obermayer, K.: A maximum common subgraph kernel method for predicting the chromosome aberration test. J. Chem. Inf. Model. 50, 1821–1838 (2010)
Hochreiter, S., Obermayer, K.: Support vector machines for dyadic data. Neural Comput. 18, 1472–1510 (2006)
Fröhlich, H., Wegner, J.K., Sieker, F., Zell, A.: Optimal assignment kernels for attributed molecular graphs. In: de Raedt, L., Wrobel, S. (eds.) Proceedings of the 22nd International Conference on Machine Learning (ICML 2005), pp. 225–232. ACM Press, Bonn (2005)
Neuhaus, M., Bunke, H.: Edit distance-based kernel functions for structural pattern classification. Pattern Recogn. 39, 1852–1863 (2006)
Vert, J.P.: The optimal assignment kernel is not positive definite. CoRR abs/0801.4061 (2008)
Williams, M.L., Wilson, R.C., Hancock, E.R.: Multiple graph matching with bayesian inference. Pattern Recogn. Lett. 18, 080 (1997)
Solé-Ribalta, A., Serratosa, F.: Models and algorithms for computing the common labelling of a set of attributed graphs. Comput. Vis. Image Underst. 115, 929–945 (2011)
Gold, S., Rangarajan, A.: A graduated assignment algorithm for graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 18, 377–388 (1996)
Yan, J., Tian, Y., Zha, H., Yang, X., Zhang, Y., Chu, S.M.: Joint optimization for consistent multiple graph matching. In: Proceedings of the 2013 IEEE International Conference on Computer Vision, ICCV 2013, Washington, DC, USA, pp. 1649–1656. IEEE Computer Society (2013)
Yan, J., Wang, J., Zha, H., Yang, X., Chu, S.: Consistency-driven alternating optimization for multigraph matching: a unified approach. IEEE Trans. Image Process. 24, 994–1009 (2015)
Pachauri, D., Kondor, R., Singh, V.: Solving the multi-way matching problem by permutation synchronization. In: Burges, C.J.C., Bottou, L., Ghahramani, Z., Weinberger, K.Q. (eds.) NIPS, pp. 1860–1868 (2013)
Torsello, A., Rodolà, E., Albarelli, A.: Multiview registration via graph diffusion of dual quaternions. In: The 24th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2011, Colorado Springs, CO, USA, 20–25 June 2011, pp. 2441–2448. IEEE Computer Society (2011)
Hartley, R.I., Trumpf, J., Dai, Y., Li, H.: Rotation averaging. Int. J. Comput. Vis. 103, 267–305 (2013)
Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale signature based on heat diffusion. In: Proceedings of the Symposium on Geometry Processing, SGP 2009, Aire-la-Ville, Switzerland, Switzerland, pp. 1383–1392. Eurographics Association (2009)
Shervashidze, N., Schweitzer, P., van Leeuwen, E.J., Mehlhorn, K., Borgwardt, K.M.: Weisfeiler-Lehman graph kernels. J. Mach. Learn. Res. 12, 2539–2561 (2011)
Shervashidze, N., Vishwanathan, S., Petri, T., Mehlhorn, K., Borgwardt, K.: Efficient graphlet kernels for large graph comparison. In: Proceedings of the International Workshop on Artificial Intelligence and Statistics (2009)
Borgwardt, K.M., peter Kriegel, H.: Shortest-path kernels on graphs. In: Proceedings of the 2005 International Conference on Data Mining, pp. 74–81 (2005)
Leordeanu, M., Hebert, M.: A spectral technique for correspondence problems using pairwise constraints. In: Tenth IEEE International Conference on Computer Vision, 2005, ICCV 2005, vol. 2, pp. 1482–1489 (2005)
Cho, M., Lee, J., Lee, K.M.: Reweighted random walks for graph matching. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 492–505. Springer, Heidelberg (2010)
Debnath, A.K., de Com-padre, R.L.L., Debnath, G., Schusterman, A.J., Hansch, C.: Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. correlation with molecular orbital energies and hydrophobicity. Med. Chem. 34, 786–797 (1991)
Jensen, L.J., Kuhn, M., Stark, M., Chaffron, S., Creevey, C., Muller, J., Doerks, T., Julien, P., Roth, A., Simonovic, M., et al.: String 8a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res. 37, D412–D416 (2009)
Li, G., Semerci, M., Yener, B., Zaki, M.J.: Effective graph classification based on topological and label attributes. Stat. Anal. Data Min. 5, 265–283 (2012)
Nene, S.A., Nayar, S.K., Murase, H.: Columbia object image library (COIL-20). Technical report, Department of Computer Science, Columbia University, New York (1996)
Biasotti, S., Marini, S., Mortara, M., Patané, G., Spagnuolo, M., Falcidieno, B.: 3D shape matching through topological structures. In: Nyström, I., Sanniti di Baja, G., Svensson, S. (eds.) DGCI 2003. LNCS, vol. 2886, pp. 194–203. Springer, Heidelberg (2003)
Schomburg, I., Chang, A., Ebeling, C., Gremse, M., Heldt, C., Huhn, G., Schomburg, D.: Brenda, the enzyme database: updates and major new developments. Nucleic Acids Res. 32, D431–D433 (2004)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Schiavinato, M., Gasparetto, A., Torsello, A. (2015). Transitive Assignment Kernels for Structural Classification. In: Feragen, A., Pelillo, M., Loog, M. (eds) Similarity-Based Pattern Recognition. SIMBAD 2015. Lecture Notes in Computer Science(), vol 9370. Springer, Cham. https://doi.org/10.1007/978-3-319-24261-3_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-24261-3_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-24260-6
Online ISBN: 978-3-319-24261-3
eBook Packages: Computer ScienceComputer Science (R0)