Abstract
We describe stroke patients’ activity patterns and trends based on motion data acquired during their stay in an ambulatory day-care centre. Our aim was to explore and quantify intensity and development in the patients’ activity patterns as these may change during the rehabilitation process. We analyse motion data recordings from wearable inertial measurement units of eleven patients up to eleven days, totally 102 recording days. Using logic rules, we extract activity primitives, including affected arm move, sit, stand, walking, etc. from selected channels of the continuous median-filtered sensor data. Using relative duration of the activity primitives, we examine patient activity patterns regarding independence in mobility, distribution of walking over the days and trends in using the affected body side. Due to the heterogeneity of patients’ behaviour, we focused on analysing patient-specific activity patterns. Our exploration showed that the rule-based activity primitive analysis is beneficial to understand individual patient activity.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bourbonnais, D., Noven, S.V.: Weakness in patients with hemiparesis. Am. J. Occup. Ther. 43(5), 313–319 (1989). http://dx.doi.org/10.5014/ajot.43.5.313
Burns, A., Greene, B.R., McGrath, M.J., OShea, T.J., Kuris, B., Ayer, S.M., Stroiescu, F., Cionca, V.: Shimmer ™- a wireless sensor platform for noninvasive biomedical research. IEEE Sens. J. 10(9), 1527–1534 (2010). http://dx.doi.org/10.1109/JSEN.2010.2045498
Cirstea, M.C.: Compensatory strategies for reaching in stroke. Brain 123(5), 940–953 (2000). http://dx.doi.org/10.1093/brain/123.5.940
Del Din, S., Patel, S., Cobelli, C., Bonato, P.: Estimating fugl-meyer clinical scores in stroke survivors using wearable sensors. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, August 2011. http://dx.doi.org/10.1109/IEMBS.2011.6091444
Di Fabio, R.P., Badke, M.B., Duncan, P.W.: Adapting human postural reflexes following localized cerebrovascular lesion: analysis of bilateral long latency responses. Brain Res. 363(2), 257–264 (1986)
Fugl-Meyer, A.R., Jääskö, L., Leyman, I., Olsson, S., Steglind, S.: The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand. J. Rehabil. Med. 7(1), 13–31 (1974). http://www.neurophys.gu.se/digitalAssets/1328/1328802_the_post-stroke-hemiplegic_patient.pdf
Gietzelt, M., Wolf, K., Kohlmann, M., Marschollek, M., Haux, R., et al.: Measurement of accelerometry-based gait parameters in people with and without dementia in the field. Meth. Inf. Med. 52(4), 319–325 (2013)
Hine, N., Judson, A., Ashraf, S.N., Arnott, J., Sixsmith, A., Brown, S., Garner, P.: Modelling the behaviour of elderly people as a means of monitoring well being. In: Ardissono, L., Brna, P., Mitrović, A. (eds.) UM 2005. LNCS (LNAI), vol. 3538, pp. 241–250. Springer, Heidelberg (2005). http://dx.doi.org/10.1007/11527886_32
Iosa, M., Fusco, A., Morone, G., Pratesi, L., Coiro, P., Venturiero, V., De Angelis, D., Bragoni, M., Paolucci, S.: Assessment of upper-body dynamic stability during walking in patients with subacute stroke. J. Rehabil. Res. Dev. 49(3), 439–450 (2012)
Knorr, B., Hughes, R., Sherrill, D., Stein, J., Akay, M., Bonato, P.: Quantitative measures of functional upper limb movement in persons after stroke. In: Conference Proceedings of the 2nd International IEEE EMBS Conference on Neural Engineering (2005). http://dx.doi.org/10.1109/CNE.2005.1419604
Murphy, T.H., Corbett, D.: Plasticity during stroke recovery: from synapse to behaviour. Nat. Rev. Neurosci. 10(12), 861–872 (2009). http://www.nature.com/nrn/journal/v10/n12/pdf/nrn2735.pdf
Parnandi, Wade, E., Mataric, M.: Motor function assessment using wearable inertial sensors. In: 2010 Annual International Conference of the IEEE on Engineering in Medicine and Biology Society (EMBC), pp. 86–89 (2010). http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5626156
Patel, S., Hughes, R., Hester, T., Stein, J., Akay, M., Dy, J., Bonato, P.: A novel approach to monitor rehabilitation outcomes in stroke survivors using wearable technology. Proc. IEEE 98(3), 450–461 (2010). http://dx.doi.org/10.1109/JPROC.2009.2038727
Rashidi, P., Cook, D.J., Holder, L.B., Schmitter-Edgecombe, M.: Discovering activities to recognize and track in a smart environment. IEEE Trans. Knowl. Data Eng. 23(4), 527–539 (2011). http://dx.doi.org/10.1109/TKDE.2010.148
Robben, S., Pol, M., Kröse, B.: Longitudinal ambient sensor monitoring for functional health assessments: a case study. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication, UbiComp 2014 Adjunct, pp. 1209–1216. ACM, New York (2014). http://doi.acm.org/10.1145/2638728.2638812
Salah, A.A., Morros, R., Luque, J., Segura, C., Hernando, J., Ambekar, O., Schouten, B., Pauwels, E.: Multimodal identification and localization of users in a smart environment. J. Multimodal User Interfaces 2(2), 75–91 (2008). http://dx.doi.org/10.1007/s12193-008-0008-y
Seiderer, A., Hammer, S., Andre, E., Mayr, M., Rist, T.: Exploring digital image frames for lifestyle intervention to improve well-being of older adults. In: Proceedings of the 5th International Conference on Digital Health 2015 - DH 15 (2015). http://dx.doi.org/10.1145/2750511.2750514
Seiter, J., Derungs, A., Schuster-Amft, C., Amft, O., Troester, G.: Daily life activity routine discovery in hemiparetic rehabilitation patients using topic models. Meth. Inf. Med. 54(2), 248–255 (2015). http://dx.doi.org/10.3414/ME14-01-0082
Spina, G., Roberts, F., Weppner, J., Lukowicz, P., Amft, O.: Crntc+: a smartphone-based sensor processing framework for prototyping personal healthcare applications. In: 2013 7th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth), pp. 252–255, May 2013
Suryadevara, N., Mukhopadhyay, S.C., Wang, R., Rayudu, R.: Forecasting the behavior of an elderly using wireless sensors data in a smart home. Eng. Appl. Artif. Intell. 26(10), 2641–2652 (2013)
Tabar, A.M., Keshavarz, A., Aghajan, H.: Smart home care network using sensor fusion and distributed vision-based reasoning. In: Proceedings of the 4th ACM international workshop on Video surveillance and sensor networks - VSSN 06 (2006). http://dx.doi.org/10.1145/1178782.1178804
Wolf, S.L., Catlin, P.A., Ellis, M., Archer, A.L., Morgan, B., Piacentino, A.: Assessing wolf motor function test as outcome measure for research in patients after stroke. Stroke 32(7), 1635–1639 (2001)
Acknowledgements
We are thankful to the study participants and the therapists at the Reha Rheinfelden. This work was supported by the EU Marie Curie Network iCareNet, grant number 264738 and the Dutch Technology Foundation STW grant number 12184.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Derungs, A., Seiter, J., Schuster-Amft, C., Amft, O. (2015). Activity Patterns in Stroke Patients - Is There a Trend in Behaviour During Rehabilitation?. In: Salah, A., Kröse, B., Cook, D. (eds) Human Behavior Understanding. Lecture Notes in Computer Science(), vol 9277. Springer, Cham. https://doi.org/10.1007/978-3-319-24195-1_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-24195-1_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-24194-4
Online ISBN: 978-3-319-24195-1
eBook Packages: Computer ScienceComputer Science (R0)