Abstract
We develop a new theory for treating boundary problems for linear ordinary differential equations whose fundamental system may have a singularity at one of the two endpoints of the given interval. Our treatment follows an algebraic approach, with (partial) implementation in the Theorema software system (which is based on Mathematica). We study an application to graded Kirchhoff plates for illustrating a typical case of such boundary problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Rosenkranz, M., Regensburger, G.: Solving and factoring boundary problems for linear ordinary differential equations in differential algebras. Journal of Symbolic Computation 43(8), 515–544 (2008)
Regensburger, G., Rosenkranz, M.: An algebraic foundation for factoring linear boundary problems. Ann. Mat. Pura Appl. (4) 188(1), 123–151 (2009). doi:10.1007/s10231-008-0068-3
Rosenkranz, M., Regensburger, G., Tec, L., Buchberger, B.: Symbolic analysis of boundary problems: from rewriting to parametrized Gröbner bases. In: Langer, U., Paule, P. (eds.) Numerical and Symbolic Scientific Computing: Progress and Prospects. Springer, pp. 273–331 (2012)
Yosida, K.: Lectures on Differential and Integral Equations. Dover (1991)
Coddington, E.A., Levinson, N.: Theory of ordinary differential equations. McGraw-Hill Book Company Inc, New York-Toronto-London (1955)
Rosenkranz, M., Buchberger, B., Engl, H.W.: Solving linear boundary value problems via non-commutative Gröbner bases. Appl. Anal. 82, 655–675 (2003)
Rosenkranz, M.: A new symbolic method for solving linear two-point boundary value problems on the level of operators. J. Symbolic Comput. 39(2), 171–199 (2005)
Buchberger, B., Craciun, A., Jebelean, T., Kovacs, L., Kutsia, T., Nakagawa, K., Piroi, F., Popov, N., Robu, J., Rosenkranz, M., Windsteiger, W.: Theorema: Towards computer-aided mathematical theory exploration. Journal of Applied Logic 4(4), 359–652 (2006). ISSN 1570–8683
Korporal, A., Regensburger, G., Rosenkranz, M.: Regular and Singular Boundary Problems in Maple. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2011. LNCS, vol. 6885, pp. 280–293. Springer, Heidelberg (2011)
Guo, L.: An Introduction to Rota-Baxter Algebras. International Press (2012)
Korporal, A.: Symbolic Methods for Generalized Green’s Operators and Boundary Problems. Ph.D. thesis, Johannes Kepler University, Linz, Austria (November 2012). Abstracted in ACM Communications in Computer Algebra, vol. 46, no. 4, issue 182, December 2012
Rosenkranz, M., Serwa, N.: Green’s functions for Stieltjes boundary problems. In: ISSAC (to appear, 2015)
Rosenkranz, M., Liu, J., Maletzky, A., Buchberger, B.: Two-point boundary problems with one mild singularity and an application to graded kirchhoff plates (May 2015). Preprint on http://arxiv.org/abs/1505.01956 http://arxiv.org/abs/1505.01956
Reddy, J.: Theory and analysis of elastic plates and shells. CRC Press, Taylor and Francis (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Rosenkranz, M., Liu, J., Maletzky, A., Buchberger, B. (2015). Two-Point Boundary Problems with One Mild Singularity and an Application to Graded Kirchhoff Plates. In: Gerdt, V., Koepf, W., Seiler, W., Vorozhtsov, E. (eds) Computer Algebra in Scientific Computing. CASC 2015. Lecture Notes in Computer Science(), vol 9301. Springer, Cham. https://doi.org/10.1007/978-3-319-24021-3_30
Download citation
DOI: https://doi.org/10.1007/978-3-319-24021-3_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-24020-6
Online ISBN: 978-3-319-24021-3
eBook Packages: Computer ScienceComputer Science (R0)