[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Detecting Spam on Twitter via Message-Passing Based on Retweet-Relation

  • Conference paper
Technologies and Applications of Artificial Intelligence (TAAI 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8916))

  • 1724 Accesses

Abstract

Due to the popularity of Twitter, it attracts malicious users’ interests. Most of previous approaches relied on account-based features such as message similarity between tweets, following-followers ratio, and so on. Account-based features can be easily manipulated by spam accounts. Spam collusion is a new way to escape the detection mechanisms. Therefore, we need an advanced mechanism to identify the spam collusion relations.

We exploit spam campaign which spreads spam tweets. We focus on the tweet with the high retweet count. We create the message-passing graph via the retweet relations, following relations, and retweet time, then we extract the time evolution feature in the aspect of graph structure. The latent behavior indexing technique is used to extract critical concepts for spam collusion recognition. We collect 5 million tweets from May 14, 2014 to July 15, 2014 and the ground-truth has been labeled by domain experts. Our approach can achieve 86% accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baltazar, J., Costoya, J., Flores, R.: The real face of koobface: The largest web 2.0 botnet explained. Trend Micro Research (2009)

    Google Scholar 

  2. Barabasi, A.L., Oltvai, Z.N.: Network biology: understanding the cell’s functional organization. Nature Reviews Genetics 5(2), 101–113 (2004)

    Article  Google Scholar 

  3. Bilge, L., Strufe, T., Balzarotti, D., Kirda, E.: All your contacts are belong to us: automated identity theft attacks on social networks. In: Proceedings of International Conference on World Wide Web, pp. 551–560 (2009)

    Google Scholar 

  4. Boyd, D., Golder, S., Lotan, G.: Tweet, tweet, retweet: Conversational aspects of retweeting on twitter. In: Proceedings of Hawaii International Conference on System Sciences, pp. 1–10 (2010)

    Google Scholar 

  5. Du, J., Song, D., Liao, L., Li, X., Liu, L., Li, G., Gao, G., Wu, G.: ReadBehavior: Reading probabilities modeling of tweets via the users’ retweeting behaviors. In: Tseng, V.S., Ho, T.B., Zhou, Z.-H., Chen, A.L.P., Kao, H.-Y. (eds.) PAKDD 2014, Part I. LNCS, vol. 8443, pp. 114–125. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  6. Ghosh, R., Surachawala, T., Lerman, K.: Entropy-based classification of’retweeting’activity on twitter. In: Proceedings of KDD Workshop on Social Network Analysis (2011)

    Google Scholar 

  7. Ghosh, S., Viswanath, B., Kooti, F., Sharma, N.K., Korlam, G., Benevenuto, F., Ganguly, N., Gummadi, K.P.: Understanding and combating link farming in the twitter social network. In: Proceedings of International Conference on World Wide Web, pp. 61–70 (2012)

    Google Scholar 

  8. Jiang, M., Cui, P., Beutel, A., Faloutsos, C., Yang, S.: Detecting suspicious following behavior in multimillion-node social networks. In: Proceedings of the Companion Publication of the International Conference on World Wide Web Companion, pp. 305–306 (2014)

    Google Scholar 

  9. Kwak, H., Lee, C., Park, H., Moon, S.: What is twitter, a social network or a news media? In: Proceedings of International Conference on World Wide Web, pp. 591–600 (2010)

    Google Scholar 

  10. Lee, S., Kim, J.: Warningbird: A near real-time detection system for suspicious urls in twitter stream. IEEE Transactions on Dependable and Secure Computing 10(3), 183–195 (2013)

    Article  Google Scholar 

  11. Netowrkx: Netowrkx, https://networkx.github.io/

  12. Nexgate: 2013 state of social media spam, http://nexgate.com/wp-content/uploads/2013/09/Nexgate-2013-State-of-Social-Media-Spam-Research-Report.pdf

  13. Peng, H.K., Zhu, J., Piao, D., Yan, R., Zhang, Y.: Retweet modeling using conditional random fields. In: Proceedings of IEEE International Conference on Data Mining Workshops, pp. 336–343 (2011)

    Google Scholar 

  14. Shekar, C., Wakade, S., Liszka, K.J., Chan, C.C.: Mining pharmaceutical spam from twitter. In: Proceedings of International Conference on Intelligent Systems Design and Applications, pp. 813–817 (2010)

    Google Scholar 

  15. Song, J., Lee, S., Kim, J.: Spam filtering in twitter using sender-receiver relationship. In: Sommer, R., Balzarotti, D., Maier, G. (eds.) RAID 2011. LNCS, vol. 6961, pp. 301–317. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  16. Stringhini, G., Kruegel, C., Vigna, G.: Detecting spammers on social networks. In: Proceedings of Annual Computer Security Applications Conference, pp. 1–9 (2010)

    Google Scholar 

  17. Stringhini, G., Wang, G., Egele, M., Kruegel, C., Vigna, G., Zheng, H., Zhao, B.Y.: Follow the green: growth and dynamics in twitter follower markets. In: Proceedings of ACM SIGCOMM Conference on Internet Measurement, pp. 163–176 (2013)

    Google Scholar 

  18. Thomas, K., Grier, C., Ma, J., Paxson, V., Song, D.: Design and evaluation of a real-time url spam filtering service. In: Proceedings of IEEE Symposium on Security and Privacy, pp. 447–462 (2011)

    Google Scholar 

  19. Twitter: About verified accounts, https://support.twitter.com/articles/119135

  20. Twitter: Rest api v1.1 resources, https://dev.twitter.com/docs/api/1.1

  21. Twitter: Twitter limits (api, updates, and following), https://support.twitter.com/articles/15364

  22. Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393(6684), 440–442 (1998)

    Article  Google Scholar 

  23. Witten, I.H., Frank, E., Hall, M.A.: Data Mining: Practical machine learning tools and techniques, 3rd edn. Morgan Kaufmann (2011)

    Google Scholar 

  24. Yang, C., Harkreader, R., Zhang, J., Shin, S., Gu, G.: Analyzing spammers’ social networks for fun and profit: a case study of cyber criminal ecosystem on twitter. In: Proceedings of International Conference on World Wide Web, pp. 71–80 (2012)

    Google Scholar 

  25. Yang, C., Harkreader, R.C., Gu, G.: Die free or live hard? Empirical evaluation and new design for fighting evolving twitter spammers. In: Sommer, R., Balzarotti, D., Maier, G. (eds.) RAID 2011. LNCS, vol. 6961, pp. 318–337. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Chen, PC., Lee, HM., Tyan, HR., Wu, JS., Wei, TE. (2014). Detecting Spam on Twitter via Message-Passing Based on Retweet-Relation. In: Cheng, SM., Day, MY. (eds) Technologies and Applications of Artificial Intelligence. TAAI 2014. Lecture Notes in Computer Science(), vol 8916. Springer, Cham. https://doi.org/10.1007/978-3-319-13987-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13987-6_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13986-9

  • Online ISBN: 978-3-319-13987-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics