[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Detecting Frauds and Money Laundering: A Tutorial

  • Conference paper
Big Data Analytics (BDA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8883))

Included in the following conference series:

Abstract

The purpose of this tutorial is to provide an introduction to the general area of frauds to analytics scientists and professionals and discuss some analytics techniques used in their detection. We focus on frauds in insurance, stock markets and on money laundering. There are survey papers [1], [2], [3] and books [4], [5], [6], [7], [8] that discuss various analytics techniques for fraud detection in general. However, they do not survey analytics for stock market frauds and money laundering. Another important contribution is that we also discuss some open areas and research problems in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 31.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 39.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bolton, R., Hand, D.: Statistical fraud detection: A review (with discussion). Statistical Science 17, 235–255 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Phua, C., Lee, V., Smith, K., Gayler, R.: A comprehensive survey of data mining-based fraud detection research. In: Tech. Report, Clayton School of Information Technology, Monash University, 1–27 (2005)

    Google Scholar 

  3. Yue, D., Wu, X., Wang, Y., Li, Y., Chu, C.H.: A review of data mining-based financial fraud detection research. In: Int. Conference on Wireless Communications, Networking and Mobile Computing, pp. 5519–5522 (2007)

    Google Scholar 

  4. Mantone, P.S.: Using Analytics to Detect Possible Fraud: Tools and Techniques. Wiley (2013)

    Google Scholar 

  5. Spann, D.: Fraud Analytics: Strategies and Methods for Detection and Prevention. Wiley (2013)

    Google Scholar 

  6. Subramanian, R.: Bank Fraud: Using Technology to Combat Losses. Wiley and SAS Business Series (2014)

    Google Scholar 

  7. Dorrell, D.D., Gadawski, G.A.: Financial Forensics Body of Knowledge. Wiley (2012)

    Google Scholar 

  8. Nigrini, M.: Forensic Analytics: Methods and Techniques for Forensic Accounting Investigations. Wiley (2011)

    Google Scholar 

  9. Viaene, S., Derrig, R.A., Baesens, B., Dedene, G.: A comparison of state-of-the-art classification techniques for expert automobile insurance claim fraud detection. Journal of Risk and Insurance 69, 373–421 (2002)

    Article  Google Scholar 

  10. Tennyson, S., Salsas-Forn, P.: Claims auditing in automobile insurance: Fraud detection and deterrence objectives. Journal of Risk and Insurance 69, 289–308 (2002)

    Article  Google Scholar 

  11. Viaene, S., Derrig, R., Dedene, G.: A case study of applying boosting naive bayes to claim fraud diagnosis. IEEE Transactions on Knowledge and Data Engineering 16, 612–620 (2004)

    Article  Google Scholar 

  12. Phua, C., Alahakoon, D., Lee, V.: Minority report in fraud detection: classification of skewed data. SIGKDD Explorations Newsletter 6, 50–59 (2004)

    Article  Google Scholar 

  13. Donoho, S.: Early detection of insider trading in option markets. In: Proc. of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD04), pp. 420–429 (2004)

    Google Scholar 

  14. Palshikar, G.K., Apte, M.: Collusion set detection using graph clustering. Data Mining and Knowledge Discovery 16, 135–164 (2008)

    Article  MathSciNet  Google Scholar 

  15. Huang, M.L., Liang, J., Nguyen, Q.V.: A visualization approach for frauds detection in financial market. In: Proc. 13th Int. Conference on Information Visualisation, pp. 197–202 (2009)

    Google Scholar 

  16. Palshikar, G., Apte, M.: Financial security against money laundering: A survey. In: Akhgar, B., Arabnia, H.R. (eds.) Emerging Trends in Information and Communication Technologies Security, ch. 36, pp. 577–590. Elsevier (Morgan Kaufman) (2013)

    Google Scholar 

  17. Madinger, J.: Money Laundering: A guide for criminal investigators, 3/e. CRC Press (2012)

    Google Scholar 

  18. Truman, E., Reuter, P.: Chasing dirty money: Progress on anti-money laundering. Peterson Institute (2004)

    Google Scholar 

  19. Turner, J.E.: Money laundering prevention: Deterring, detecting, and resolving financial fraud. Wiley (2011)

    Google Scholar 

  20. Senator, T.E., Goldberg, H.G., Wooton, J., Cottini, M.A., Khan, A.F.U., Klinger, C.D., et al.: The financial crimes enforcement network AI system (FAIS): Identifying potential money laundering from reports of large cash transactions. AI Magazine 16, 21–39 (1995)

    Google Scholar 

  21. Deng, X., Joseph, V.R., Sudjianto, A., Wu, J.: Active learning via sequential design with applications to detection of money laundering. Journal of American Statistics Association 104, 969–981 (2009)

    Article  MathSciNet  Google Scholar 

  22. Zhang, Z., Salerno, J.J., Yu, P.S.: Applying data mining in investigating money laundering crimes. In: Proc. SIGKDD 2003, pp. 747–772 (2003)

    Google Scholar 

  23. Michalak, K., Korczak, J.: Graph mining approach to suspicious transaction detection. In: Proc. Federated Conference on Computer Science and Information Systems, pp. 69–75 (2011)

    Google Scholar 

  24. Moll, L.: Anti money laundering under real world conditions-Finding relevant patterns. MS thesis, Department of Informatics: University of Zurich (2009)

    Google Scholar 

  25. Chang, R., Lee, A., Ghoniem, M., Kosara, R., Ribarsky, W., Yang, J., et al.: Scalable and interactive visual analysis of financial wire transactions for fraud detection. Information Visualization 7, 63–76 (2008)

    Article  Google Scholar 

  26. Zdanowicz, J.S.: Detecting money laundering and terrorist financing via data mining. Communications of the ACM 47, 53–55 (2004)

    Article  Google Scholar 

  27. Kingdon, J.: AI fights money laundering. IEEE Intellent Systems 19, 87–89 (2004)

    Article  Google Scholar 

  28. Bolton, R.J., Hand, D.J., David, J.H.: Unsupervised profiling methods for fraud detection. In: Proc. Credit Scoring and Credit Control VII, pp. 5–7 (2001)

    Google Scholar 

  29. Zengan, G.: Application of cluster based local outlier factor algorithm in anti money laundering. In: Proc. Int. Conference on Management and Service Science (MASS 2009), pp. 1–4 (2009)

    Google Scholar 

  30. Ju, C., Zheng, L.: Research on suspicious financial transactions recognition based on privacy preserving of classification algorithm. In: Proc. 1st Int. Workshop on Education Technology and Computer Science (ETCS 2009), pp. 525–528 (2009)

    Google Scholar 

  31. Gao, Z., Ye, M.: A framework for data mining-based anti-money laundering research. Journal of Money Laundering Control 10, 170–179 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Palshikar, G.K. (2014). Detecting Frauds and Money Laundering: A Tutorial. In: Srinivasa, S., Mehta, S. (eds) Big Data Analytics. BDA 2014. Lecture Notes in Computer Science, vol 8883. Springer, Cham. https://doi.org/10.1007/978-3-319-13820-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13820-6_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13819-0

  • Online ISBN: 978-3-319-13820-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics