[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

On the Breast Mass Diagnosis Using Bayesian Networks

  • Conference paper
Nature-Inspired Computation and Machine Learning (MICAI 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8857))

Included in the following conference series:

Abstract

Nowadays, breast cancer is considered a significant health problem in Mexico. Mammogram is an effective study for detecting mass lesions, which could indicate this disease. However, due to the density of breast tissue and a wide range of mass characteristic, the mass diagnosis is difficult. In this study, the performance comparison of Bayesian networks models on classification of benign and malignant masses is presented. Here, Naïve Bayes, Tree Augmented Naïve Bayes, K-dependence Bayesian classifier, and Forest Augmented Naïve Bayes models are analyzed. Two data sets extracted from the public BCDR-F01 database, including 112 benign and 119 malignant masses, were used to train the models. The experimental results have shown that TAN, KDB, and FAN models with a subset of only eight features have achieved a performance of 0.79 in accuracy, 0.80 in sensitivity, and 0.77 in specificity. Therefore, these models which allow dependencies among variables (features), are considered as suitable and promising methods for automated mass classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. American College of Radiology, ACR: Breast Imaging Reporting and Data System BI-RADS, 4th edn. (2003)

    Google Scholar 

  2. Brake, G.T.: Computer Aided Detection of Masses in Digital Mammograms. Ph.D. thesis, University Medical Center Nijmegen (2000)

    Google Scholar 

  3. Burnside, E., Rubin, D., Shachter, R.: A Bayesian network for mammography. In: Proceedings of the AMIA Symposium, p. 106. American Medical Informatics Association (2000)

    Google Scholar 

  4. Burnside, E.S., Davis, J., Chhatwal, J., Alagoz, O., Lindstrom, M.J., Geller, B.M., Littenberg, B., Shaffer, K.A., Kahn Jr., C.E., Page, C.D.: Probabilistic computer model developed from clinical data in national mammography database format to classify mammographic findings 1. Radiology 251(3), 663–672 (2009)

    Article  Google Scholar 

  5. Cárdenas, J.S., Bargalló, E.R., Erazo, A.V., Maafs, E.M., Poitevin, A.C.: Consenso mexicano sobre diagnóstico y tratamiento del cáncer mamario: Quinta Revisión. Elsevier Masson Doyma México (2013)

    Google Scholar 

  6. Castillo, E.: Expert systems and probabilistic network models. Springer (1997)

    Google Scholar 

  7. Cheng, H., Shi, X., Min, R., Hu, L., Cai, X., Du, H.: Approaches for automated detection and classification of masses in mammograms. Pattern Recognition 39(4), 646–668 (2006)

    Article  Google Scholar 

  8. Cheng, J., Greiner, R.: Learning Bayesian belief network classifiers: Algorithms and system. In: Stroulia, E., Matwin, S. (eds.) Canadian AI 2001. LNCS (LNAI), vol. 2056, p. 141. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  9. Delogu, P., Evelina Fantacci, M., Kasae, P., Retico, A.: Characterization of mammographic masses using a gradient-based segmentation algorithm and a neural classifier. Computers in Biology and Medicine 37(10), 1479–1491 (2007)

    Article  Google Scholar 

  10. Fischer, E., Lo, J., Markey, M.: Bayesian networks of BI-RADS descriptors for breast lesion classification. In: 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEMBS 2004, vol. 2, pp. 3031–3034. IEEE (2004)

    Google Scholar 

  11. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Machine Learning 29(2-3), 131–163 (1997)

    Article  MATH  Google Scholar 

  12. Heckerman, D.: A tutorial on learning with Bayesian networks. Springer (1998)

    Google Scholar 

  13. Jackson, V., Dines, K., Bassett, L., Gold, R., Reynolds, H.: Diagnostic importance of the radiographic density of noncalcified breast masses: analysis of 91 lesions. American Journal of Roentgenology 157(1), 25–28 (1991)

    Article  Google Scholar 

  14. Kahn Jr., C.E., Roberts, L.M., Shaffer, K.A., Haddawy, P.: Construction of a Bayesian network for mammographic diagnosis of breast cancer. Computers in Biology and Medicine 27(1), 19–29 (1997)

    Article  Google Scholar 

  15. Karssemeijer, N., Brake, G.T.: Detection of stellate distortions in mammograms. IEEE Transactions on Medical Imaging 15(5), 611–619 (1996)

    Article  Google Scholar 

  16. Leray, P., Francois, O.: BNT structure learning package. Tech. Rep. FRE CNRS 2645, Technical Report, Laboratoire PSI-INSA Rouen-FRE CNRS (2004)

    Google Scholar 

  17. Lucas, P.J.: Restricted Bayesian network structure learning. In: Gámez, J.A., Moral, S., Salmerón, A. (eds.) Advances in Bayesian Networks. STUDFUZZ, vol. 146, pp. 217–234. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  18. Moura, D.C., López, M.A.G.: An evaluation of image descriptors combined with clinical data for breast cancer diagnosis. International Journal of Computer Assisted Radiology and Surgery 8(4), 561–574 (2013)

    Article  Google Scholar 

  19. Murphy, K.: How to use Bayes net toolbox (2004), http://www.ai.mit.edu/murphyk/Software/BNT/bnt.html

  20. National Cancer Institute, NCI: General Information About Breast Cancer (May 2014), http://www.cancer.gov/cancertopics/pdq/treatment/breast/Patient/page1 (retrieved)

  21. Nixon, M.S., Aguado, A.S.: Feature extraction & image processing for computer vision. Academic Press (2012)

    Google Scholar 

  22. Patrocinio, A.C., Schiabel, H., Romero, R.A.: Evaluation of Bayesian network to classify clustered microcalcifications. In: Medical Imaging 2004, pp. 1026–1033. International Society for Optics and Photonics (2004)

    Google Scholar 

  23. Rasband, W.: ImageJ: Image processing and analysis in Java. Astrophysics Source Code Library (2012)

    Google Scholar 

  24. Sahami, M.: Learning limited dependence Bayesian classifiers. In: KDD, vol. 96, pp. 335–338 (1996)

    Google Scholar 

  25. Sampat, M., Markey, M., Bovik, A.: Computer-Aided Detection and Diagnosis in Mammography. In: Handbook of Image and Video Processing, ch. 10.4, pp. 1195–1217. Elsevier Academic Press (2005)

    Google Scholar 

  26. Samulski, M.R.M.: Classification of Breast Lesions in Digital Mammograms. Master’s thesis, University Medical Center Nijmegen, Netherlands (2006)

    Google Scholar 

  27. Samulski, M., Karssemeijer, N., Lucas, P., Groot, P.: Classification of mammographic masses using support vector machines and Bayesian networks. In: Medical Imaging, pp. 65141J–65141J. International Society for Optics and Photonics (2007)

    Google Scholar 

  28. Sickles, E.A.: Breast masses: mammographic evaluation. Radiology 173(2), 297–303 (1989)

    Article  Google Scholar 

  29. Tang, X.: Texture information in run-length matrices. IEEE Transactions on Image Processing 7(11), 1602–1609 (1998)

    Article  Google Scholar 

  30. Tsui, P.H., Liao, Y.Y., Chang, C.C., Kuo, W.H., Chang, K.J., Yeh, C.K.: Classification of benign and malignant breast tumors by 2-d analysis based on contour description and scatterer characterization. IEEE Transactions on Medical Imaging 29(2), 513–522 (2010)

    Article  Google Scholar 

  31. Velikova, M., Lucas, P.J., Samulski, M., Karssemeijer, N.: A probabilistic framework for image information fusion with an application to mammographic analysis. Medical Image Analysis 16(4), 865–875 (2012)

    Article  Google Scholar 

  32. Weszka, J.S., Rosenfeld, A.: A comparative study of texture measures for terrain classification. NASA STI/Recon Technical Report N 76, 13470 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Rodríguez-López, V., Cruz-Barbosa, R. (2014). On the Breast Mass Diagnosis Using Bayesian Networks. In: Gelbukh, A., Espinoza, F.C., Galicia-Haro, S.N. (eds) Nature-Inspired Computation and Machine Learning. MICAI 2014. Lecture Notes in Computer Science(), vol 8857. Springer, Cham. https://doi.org/10.1007/978-3-319-13650-9_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13650-9_41

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13649-3

  • Online ISBN: 978-3-319-13650-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics