[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Exploiting Description Knowledge for Keyphrase Extraction

  • Conference paper
PRICAI 2014: Trends in Artificial Intelligence (PRICAI 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8862))

Included in the following conference series:

  • 6509 Accesses

Abstract

Keyphrase extraction is essential for many IR and NLP tasks. Existing methods usually use the phrases of the document separately without distinguishing the potential semantic correlations among them, or other statistical features from knowledge bases such as WordNet and Wikipedia. However, the mutual semantic information between phrases is also important, and exploiting their correlations may potentially help us more effectively extract the keyphrases. Generally, phrases in the title are more likely to be keyphrases reflecting the document topics, and phrases in the body are usually used to describe the document topics. We regard the relation between the title phrase and body phrase as a description relation. To this end, this paper proposes a novel keyphrase extraction approach by exploiting massive description relations. To make use of the semantic information provided by the description relations, we organize the phrases of a document as a description graph, and employ various graph-based ranking algorithms to rank the candidates. Experimental results on the real dataset demonstrate the effectiveness of the proposed approach in keyphrase extraction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wan, X., Xiao, J.: Exploiting neighborhood knowledge for single document summarization and keyphrase extraction. ACM Transactions on Information Systems (TOIS) 28(2), 8 (2010)

    Article  Google Scholar 

  2. Liu, Z., Li, P., Zheng, Y., Sun, M.: Clustering to find exemplar terms for keyphrase extraction. In: EMNLP, pp. 257–266. ACL (2009)

    Google Scholar 

  3. Frank, E., Paynter, G.W., Witten, I.H., Gutwin, C., Nevill-Manning, C.G.: Domain-specific keyphrase extraction. In: IJCAI, pp. 668–673 (1999)

    Google Scholar 

  4. Jones, S., Staveley, M.S.: Phrasier: a system for interactive document retrieval using keyphrases. In: SIGIR, pp. 160–167. ACM (1999)

    Google Scholar 

  5. Medelyan, O., Witten, I.H.: Thesaurus based automatic keyphrase indexing. In: JCDL, pp. 296–297. ACM (2006)

    Google Scholar 

  6. Song, M., Song, I.Y., Allen, R.B., Obradovic, Z.: Keyphrase extraction-based query expansion in digital libraries. In: JCDL, pp. 202–209. ACM (2006)

    Google Scholar 

  7. Salton, G., McGill, M.J.: Introduction to modern information retrieval (1986)

    Google Scholar 

  8. Witten, I.H., Paynter, G.W., Frank, E., Gutwin, C., Nevill-Manning, C.G.: Kea: Practical automatic keyphrase extraction. In: Conference on Digital Libraries, vol. 3, pp. 147–151. ACM (1999)

    Google Scholar 

  9. Medelyan, O., Frank, E., Witten, I.H.: Human-competitive tagging using automatic keyphrase extraction. In: EMNLP, pp. 1318–1327. ACL (2009)

    Google Scholar 

  10. Grineva, M., Grinev, M., Lizorkin, D.: Extracting key terms from noisy and multitheme documents. In: WWW, pp. 661–670. ACM (2009)

    Google Scholar 

  11. Mahdi, A.E., Joorabchi, A.: A citation-based approach to automatic topical indexing of scientific literature. Journal of Information Science 36(6), 798–811 (2010)

    Article  Google Scholar 

  12. Joorabchi, A., Mahdi, A.E.: Automatic keyphrase annotation of scientific documents using wikipedia and genetic algorithms. Journal of Information Science 39(3), 410–426 (2013)

    Article  Google Scholar 

  13. Mihalcea, R., Csomai, A.: Wikify!: linking documents to encyclopedic knowledge. In: CIKM, pp. 233–242. ACM (2007)

    Google Scholar 

  14. Yeh, E., Ramage, D., Manning, C.D., Agirre, E., Soroa, A.: Wikiwalk: random walks on wikipedia for semantic relatedness. In: TextGraphs Workshop, pp. 41–49. ACL (2009)

    Google Scholar 

  15. Milne, D.: Computing semantic relatedness using wikipedia link structure. In: Proceedings of the New Zealand Computer Science Research Student Conference. Citeseer (2007)

    Google Scholar 

  16. Fogarolli, A.: Word sense disambiguation based on wikipedia link structure. In: ICSC 2009, pp. 77–82. IEEE (2009)

    Google Scholar 

  17. Milne, D., Witten, I.H.: An open-source toolkit for mining wikipedia. Artificial Intelligence 194, 222–239 (2013)

    Article  MathSciNet  Google Scholar 

  18. Huang, C., Tian, Y., Zhou, Z., Ling, C.X., Huang, T.: Keyphrase extraction using semantic networks structure analysis. In: ICDM, pp. 275–284. IEEE (2006)

    Google Scholar 

  19. Zhang, W., Feng, W., Wang, J.: Integrating semantic relatedness and words’ intrinsic features for keyword extraction. In: IJCAI, pp. 2225–2231. AAAI (2013)

    Google Scholar 

  20. Lahiri, S., Choudhury, S.R., Caragea, C.: Keyword and keyphrase extraction using centrality measures on collocation networks. arXiv (2014)

    Google Scholar 

  21. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order to the web (1999)

    Google Scholar 

  22. Jeh, G., Widom, J.: Simrank: a measure of structural-context similarity. In: KDD, pp. 538–543. ACM (2002)

    Google Scholar 

  23. Wang, S., Xie, S., Zhang, X., Li, Z., Yu, P.S., Shu, X.: Future influence ranking of scientific literature. In: SDM, pp. 749–757. SIAM (2014)

    Google Scholar 

  24. Jiang, X., Hu, Y., Li, H.: A ranking approach to keyphrase extraction. In: SIGIR, pp. 756–757. ACM (2009)

    Google Scholar 

  25. Medelyan, O.: Human-competitive automatic topic indexing. PhD thesis, The University of Waikato (2009)

    Google Scholar 

  26. Rolling, L.: Indexing consistency, quality and efficiency. Information Processing & Management 17(2), 69–76 (1981)

    Article  Google Scholar 

  27. Hasan, K.S., Ng, V.: Conundrums in unsupervised keyphrase extraction: making sense of the state-of-the-art. In: ICCL Posters, pp. 365–373. ACL (2010)

    Google Scholar 

  28. Kim, S.N., Medelyan, O., Kan, M.-Y., Baldwin, T.: Semeval-2010 task 5: Automatic keyphrase extraction from scientific articles. In: ACL Workshop, pp. 21–26. ACL (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, F., Wang, Z., Wang, S., Li, Z. (2014). Exploiting Description Knowledge for Keyphrase Extraction. In: Pham, DN., Park, SB. (eds) PRICAI 2014: Trends in Artificial Intelligence. PRICAI 2014. Lecture Notes in Computer Science(), vol 8862. Springer, Cham. https://doi.org/10.1007/978-3-319-13560-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13560-1_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13559-5

  • Online ISBN: 978-3-319-13560-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics