[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Discarding Non Informative Regions for Efficient Colonoscopy Image Analysis

  • Conference paper
  • First Online:
Computer-Assisted and Robotic Endoscopy (CARE 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8899))

Included in the following conference series:

Abstract

The diagnostic yield of colon cancer screening using colonoscopy could improve using intelligent systems. The large amount of data provided by high definition equipments contains frames with large non-informative regions. Non-informative regions have such a low visual quality that even physicians can not properly identify structures. Thus, identification of such regions is an important step for an efficient and accurate processing. We present a strategy for discarding non-informative regions in colonoscopy frames based on a model of appearance of such regions. Three different methods are proposed to characterize accurately the boundary between informative and non-informative regions. Preliminary results shows that there is a statistically significant difference between each of the methods as some of them are more strict when deciding which part of the image is informative and others regarding which is the non-informative region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 27.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 34.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Siegel, R., DeSantis, C., Jemal, A.: Colorectal cancer statistics. CA Cancer J. Clin. 64(2), 104–117 (2014)

    Article  Google Scholar 

  2. Bressler, B., Paszat, L., Chen, Z., Rothwell, D., Vinden, C., Rabeneck, L.: Rates of new or missed colorectal cancers after colonoscopy and their risk factors: a population-based analysis. Gastroenterology 132(1), 96–102 (2007)

    Article  Google Scholar 

  3. Pickhardt, P., Nugent, P., Mysliwiec, P., Choi, J., Schindler, W.: Location of adenomas missed by optical colonoscopy. Ann. Intern. Med. 141(5), 352–359 (2004)

    Article  Google Scholar 

  4. Bernal, J., Vilariño, F., Sánchez, J.: Colonoscopy Book 1: Towards Intelligent Systems for Colonoscopy. In-Tech (2011)

    Google Scholar 

  5. Arnold, M., Ghosh, A., Lacey, G., Patchett, S., Mulcahy, H.: Indistinct frame detection in colonoscopy videos. In: 2009 13th International Machine Vision and Image Processing Conference, pp. 47–52 (2009)

    Google Scholar 

  6. Oh, J., Hwang, S., Tavanapong, W., de Groen, P., Wong, J.: Blurry-frame detection and shot segmentation in colonoscopy videos. In: Proceedings of SPIE, vol. 5307, p. 531 (2003)

    Google Scholar 

  7. Cao, Y., Liu, D., Tavanapong, W., Wong, J., Oh, J., de Groen, P.: Computer-aided detection of diagnostic and therapeutic operations in colonoscopy videos. IEEE Trans. Biomed. Eng. 54(7), 1268–1279 (2007)

    Article  Google Scholar 

  8. Bernal, J., Sánchez, J., Vilariño, F.: Reduction of pattern search area in colonoscopy images by merging non-informative regions. In: Proceedings of the XXVIII Congreso Anual de la Sociedad Española de Ingeniería Biomédica, (Madrid, Spain), pp. 88–96, November 2010

    Google Scholar 

  9. Bernal, J., Sánchez, J., Vilarino, F.: Towards automatic polyp detection with a polyp appearance model. Pattern Recogn. 45, 3047–3582 (2012)

    Article  Google Scholar 

  10. Sánchez, C., Bernal, J., Gil, D., Sánchez, F.J.: On-line lumen centre detection in gastrointestinal and respiratory endoscopy. In: Erdt, M., Linguraru, M.G., Laura, C.O., Shekhar, R., Wesarg, S., González Ballester, M.A., Drechsler, K. (eds.) CLIP 2013. LNCS, vol. 8361, pp. 32–39. Springer, Heidelberg (2014)

    Google Scholar 

  11. Vera, S., Gil, D., Borràs, A., Linguraru, M.A., Marius, G., Ballester, G.: Geometric steerable medial maps. Mach. Vis. Appl. (in press)

    Google Scholar 

  12. Freeman, W., Adelson, E.: The design and use of steerable filters. IEEE Trans. Pattern Anal. Mach. Intell. 13(9), 891–906 (1991)

    Article  Google Scholar 

  13. López, A.M., Lumbreras, F., et al.: Evaluation of methods for ridge and valley detection. IEEE Trans. Pattern Anal. 21(4), 327–335 (1999)

    Article  Google Scholar 

  14. Bernal, J., Sánchez, J., Vilariño, F.: Impact of image preprocessing methods on polyp localization in colonoscopy frames. In: Proceedings of the 35th IEEE EMBC, Osaka, Japan, July 2013 (in press)

    Google Scholar 

  15. Zhang, X., Jia, F., Luo, S., Liu, G., Hu, Q.: A marker-based watershed method for X-ray image segmentation. Comput. Methods Programs Biomed. 113, 894–903 (2014)

    Article  Google Scholar 

  16. Riaz, F., Ribeiro, M., Coimbra, M.: Quantitative comparison of segmentation methods for in-body images. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2009, pp. 5785–5788, September 2009

    Google Scholar 

  17. Wallis, K.: Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 47(260), 583–621 (1952)

    Article  MATH  Google Scholar 

  18. Myers, J.L., Well, A.D.: Research Design and Statistical Analysis, 2nd edn. Lawrence Erlbaum Associates, New Jersey (2009)

    Google Scholar 

  19. Hochberg, Y., Tamhane, A.: Multiple Comparison Procedures. Wiley, New York (1987)

    Book  MATH  Google Scholar 

  20. Sánchez, F.J.: Proyecto crossvisions (2006)

    Google Scholar 

Download references

Acknowledgments

This work was supported by a research grant from Universitat Autónoma de Barcelona 471-01- 2/2010 and by Spanish projects \(TIN2009-10435\), \(TIN2009-13618\) and \(TIN2012-33116\).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Bernal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Bernal, J., Gil, D., Sánchez, C., Sánchez, F.J. (2014). Discarding Non Informative Regions for Efficient Colonoscopy Image Analysis. In: Luo, X., Reichl, T., Mirota, D., Soper, T. (eds) Computer-Assisted and Robotic Endoscopy. CARE 2014. Lecture Notes in Computer Science(), vol 8899. Springer, Cham. https://doi.org/10.1007/978-3-319-13410-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13410-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13409-3

  • Online ISBN: 978-3-319-13410-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics