Abstract
The diagnostic yield of colon cancer screening using colonoscopy could improve using intelligent systems. The large amount of data provided by high definition equipments contains frames with large non-informative regions. Non-informative regions have such a low visual quality that even physicians can not properly identify structures. Thus, identification of such regions is an important step for an efficient and accurate processing. We present a strategy for discarding non-informative regions in colonoscopy frames based on a model of appearance of such regions. Three different methods are proposed to characterize accurately the boundary between informative and non-informative regions. Preliminary results shows that there is a statistically significant difference between each of the methods as some of them are more strict when deciding which part of the image is informative and others regarding which is the non-informative region.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Siegel, R., DeSantis, C., Jemal, A.: Colorectal cancer statistics. CA Cancer J. Clin. 64(2), 104–117 (2014)
Bressler, B., Paszat, L., Chen, Z., Rothwell, D., Vinden, C., Rabeneck, L.: Rates of new or missed colorectal cancers after colonoscopy and their risk factors: a population-based analysis. Gastroenterology 132(1), 96–102 (2007)
Pickhardt, P., Nugent, P., Mysliwiec, P., Choi, J., Schindler, W.: Location of adenomas missed by optical colonoscopy. Ann. Intern. Med. 141(5), 352–359 (2004)
Bernal, J., Vilariño, F., Sánchez, J.: Colonoscopy Book 1: Towards Intelligent Systems for Colonoscopy. In-Tech (2011)
Arnold, M., Ghosh, A., Lacey, G., Patchett, S., Mulcahy, H.: Indistinct frame detection in colonoscopy videos. In: 2009 13th International Machine Vision and Image Processing Conference, pp. 47–52 (2009)
Oh, J., Hwang, S., Tavanapong, W., de Groen, P., Wong, J.: Blurry-frame detection and shot segmentation in colonoscopy videos. In: Proceedings of SPIE, vol. 5307, p. 531 (2003)
Cao, Y., Liu, D., Tavanapong, W., Wong, J., Oh, J., de Groen, P.: Computer-aided detection of diagnostic and therapeutic operations in colonoscopy videos. IEEE Trans. Biomed. Eng. 54(7), 1268–1279 (2007)
Bernal, J., Sánchez, J., Vilariño, F.: Reduction of pattern search area in colonoscopy images by merging non-informative regions. In: Proceedings of the XXVIII Congreso Anual de la Sociedad Española de Ingeniería Biomédica, (Madrid, Spain), pp. 88–96, November 2010
Bernal, J., Sánchez, J., Vilarino, F.: Towards automatic polyp detection with a polyp appearance model. Pattern Recogn. 45, 3047–3582 (2012)
Sánchez, C., Bernal, J., Gil, D., Sánchez, F.J.: On-line lumen centre detection in gastrointestinal and respiratory endoscopy. In: Erdt, M., Linguraru, M.G., Laura, C.O., Shekhar, R., Wesarg, S., González Ballester, M.A., Drechsler, K. (eds.) CLIP 2013. LNCS, vol. 8361, pp. 32–39. Springer, Heidelberg (2014)
Vera, S., Gil, D., Borràs, A., Linguraru, M.A., Marius, G., Ballester, G.: Geometric steerable medial maps. Mach. Vis. Appl. (in press)
Freeman, W., Adelson, E.: The design and use of steerable filters. IEEE Trans. Pattern Anal. Mach. Intell. 13(9), 891–906 (1991)
López, A.M., Lumbreras, F., et al.: Evaluation of methods for ridge and valley detection. IEEE Trans. Pattern Anal. 21(4), 327–335 (1999)
Bernal, J., Sánchez, J., Vilariño, F.: Impact of image preprocessing methods on polyp localization in colonoscopy frames. In: Proceedings of the 35th IEEE EMBC, Osaka, Japan, July 2013 (in press)
Zhang, X., Jia, F., Luo, S., Liu, G., Hu, Q.: A marker-based watershed method for X-ray image segmentation. Comput. Methods Programs Biomed. 113, 894–903 (2014)
Riaz, F., Ribeiro, M., Coimbra, M.: Quantitative comparison of segmentation methods for in-body images. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2009, pp. 5785–5788, September 2009
Wallis, K.: Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 47(260), 583–621 (1952)
Myers, J.L., Well, A.D.: Research Design and Statistical Analysis, 2nd edn. Lawrence Erlbaum Associates, New Jersey (2009)
Hochberg, Y., Tamhane, A.: Multiple Comparison Procedures. Wiley, New York (1987)
Sánchez, F.J.: Proyecto crossvisions (2006)
Acknowledgments
This work was supported by a research grant from Universitat Autónoma de Barcelona 471-01- 2/2010 and by Spanish projects \(TIN2009-10435\), \(TIN2009-13618\) and \(TIN2012-33116\).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Bernal, J., Gil, D., Sánchez, C., Sánchez, F.J. (2014). Discarding Non Informative Regions for Efficient Colonoscopy Image Analysis. In: Luo, X., Reichl, T., Mirota, D., Soper, T. (eds) Computer-Assisted and Robotic Endoscopy. CARE 2014. Lecture Notes in Computer Science(), vol 8899. Springer, Cham. https://doi.org/10.1007/978-3-319-13410-9_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-13410-9_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-13409-3
Online ISBN: 978-3-319-13410-9
eBook Packages: Computer ScienceComputer Science (R0)