[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

An Improved Approximation Algorithm for the Minimum Common Integer Partition Problem

  • Conference paper
  • First Online:
Algorithms and Computation (ISAAC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8889))

Included in the following conference series:

  • 1556 Accesses

Abstract

Given a collection of multisets \(\{X_1, X_2, \ldots , X_k\}\) (\(k \ge 2\)) of positive integers, a multiset \(S\) is a common integer partition for them if \(S\) is an integer partition of every multiset \(X_i, 1 \le i \le k\). The minimum common integer partition (\(k\)-MCIP) problem is defined as to find a CIP for \(\{X_1, X_2, \ldots , X_k\}\) with the minimum cardinality. We present a \(\frac{6}{5}\)-approximation algorithm for the \(2\)-MCIP problem, improving the previous best algorithm of ratio \(\frac{5}{4}\) designed in 2006. We then extend it to obtain an absolute \(0.6k\)-approximation algorithm for \(k\)-MCIP when \(k\) is even (when \(k\) is odd, the approximation ratio is \(0.6k+0.4\)).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithm, and Applications. China Machine Press (2005)

    Google Scholar 

  2. Andrews, G.: The Theory of Partitions. Addison-Wesley (1976)

    Google Scholar 

  3. Andrews, G., Eriksson, K.: The Integer Partitions. Cambridge University Press (2004)

    Google Scholar 

  4. Berman, P.: A \(d\)/2 approximation for maximum weight independent set in \(d\)-claw free graphs. In: Halldórsson, M.M. (ed.) SWAT 2000. LNCS, vol. 1851, pp. 214–219. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  5. Chen, X., Liu, L., Liu, Z., Jiang, T.: On the minimum common integer partition problem. In: Calamoneri, T., Finocchi, I., Italiano, G.F. (eds.) CIAC 2006. LNCS, vol. 3998, pp. 236–247. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Chen, X., Liu, L., Liu, Z., Jiang, T.: On the minimum common integer partition problem. ACM Transactions on Algorithms 5, Article 12 (2008)

    Google Scholar 

  7. Chen, X., Zheng, J., Fu, Z., Nan, P., Zhong, Y., Lonardi, S., Jiang, T.: The assignment of orthologous genes via genome rearrangement. IEEE/ACM Transactions on Computational Biololgy and Bioinformatics 2, 302–315 (2005)

    Article  Google Scholar 

  8. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. The MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  9. Kann, V.: Maximum bounded 3-dimensional matching is MAX SNP-complete. Information Processing Letters 37, 27–35 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  10. Woodruff, D.P.: Better approximations for the minimum common integer partition problem. In: Díaz, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.) APPROX 2006 and RANDOM 2006. LNCS, vol. 4110, pp. 248–259. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Zhao, W., Zhang, P., Jiang, T.: A network flow approach to the minimum common integer partition problem. Theoretical Computer Science 369, 456–462 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohui Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Tong, W., Lin, G. (2014). An Improved Approximation Algorithm for the Minimum Common Integer Partition Problem. In: Ahn, HK., Shin, CS. (eds) Algorithms and Computation. ISAAC 2014. Lecture Notes in Computer Science(), vol 8889. Springer, Cham. https://doi.org/10.1007/978-3-319-13075-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13075-0_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13074-3

  • Online ISBN: 978-3-319-13075-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics