[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Covering Problems for Partial Words and for Indeterminate Strings

  • Conference paper
  • First Online:
Algorithms and Computation (ISAAC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8889))

Included in the following conference series:

  • 1522 Accesses

Abstract

We consider the problem of computing a solid cover of an indeterminate string. An indeterminate string may contain non-solid symbols, each of which specifies a subset of the alphabet that could be present at the corresponding position. We also consider covering partial words, which are a special case of indeterminate strings where each non-solid symbol is a don’t care symbol. We prove that both indeterminate string covering problem and partial word covering problem are NP-complete for binary alphabet and show that both problems are fixed-parameter tractable with respect to \(k\), the number of non-solid symbols. For the indeterminate string covering problem we obtain a \(2^{\mathcal {O}(k\log k)} + n k^{\mathcal {O}(1)}\)-time algorithm. For the partial word covering problem we obtain a \(2^{\mathcal {O}(\sqrt{k}\log k)} + nk^{\mathcal {O}(1)}\)-time algorithm. We prove that, unless the Exponential Time Hypothesis is false, no \(2^{o(\sqrt{k})} n^{\mathcal {O}(1)}\)-time solution exists for this problem, which shows that our algorithm for this case is close to optimal. We also present an algorithm for both problems which is feasible in practice.

Tomasz Kociumaka: Supported by Polish budget funds for science in 2013-2017 as a research project under the ’Diamond Grant’ program.

Jakub Radoszewski: The author receives financial support of Foundation for Polish Science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abrahamson, K.R.: Generalized string matching. SIAM Journal on Computing 16(6), 1039–1051 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  2. Antoniou, P., Crochemore, M., Iliopoulos, C.S., Jayasekera, I., Landau, G.M.: Conservative string covering of indeterminate strings. In: Holub, J., Žďárek, J. (eds.) Prague Stringology Conference 2008, pp. 108–115. Czech Technical University, Prague (2008)

    Google Scholar 

  3. Apostolico, A., Ehrenfeucht, A.: Efficient detection of quasiperiodicities in strings. Theoretical Computer Science 119(2), 247–265 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  4. Apostolico, A., Farach, M., Iliopoulos, C.S.: Optimal superprimitivity testing for strings. Information Processessing Letters 39(1), 17–20 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bari, M.F., Rahman, M.S., Shahriyar, R.: Finding all covers of an indeterminate string in \(O(n)\) time on average. In: Holub, J., Žďárek, J. (eds.) Prague Stringology Conference 2009, pp. 263–271. Czech Technical University, Prague (2009)

    Google Scholar 

  6. Blanchet-Sadri, F.: Algorithmic Combinatorics on Partial Words. Chapman & Hall/CRC Press, Boca Raton (2008)

    Google Scholar 

  7. Breslauer, D.: An on-line string superprimitivity test. Information Processing Letters 44(6), 345–347 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  8. Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on Strings. Cambridge University Press (2007)

    Google Scholar 

  9. Fischer, M.J., Paterson, M.S.: String matching and other products. In: Karp, R.M. (ed.) Complexity of Computation. SIAM-AMS Proceedings, vol. 7, pp. 113–125. AMS, Providence (1974)

    Google Scholar 

  10. Holub, J., Smyth, W.F., Wang, S.: Fast pattern-matching on indeterminate strings. Journal of Discrete Algorithms 6(1), 37–50 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Iliopoulos, C.S., Mohamed, M., Mouchard, L., Perdikuri, K., Smyth, W.F., Tsakalidis, A.K.: String regularities with don’t cares. Nordic Journal of Computing 10(1), 40–51 (2003)

    MATH  MathSciNet  Google Scholar 

  12. Iliopoulos, C.S., Moore, D., Park, K.: Covering a string. Algorithmica 16(3), 288–297 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  13. Impagliazzo, R., Paturi, R.: On the complexity of \(k\)-SAT. Journal of Computer and System Sciences 62(2), 367–375 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? Journal of Computer and System Sciences 63(4), 512–530 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Indyk, P.: Faster algorithms for string matching problems: Matching the convolution bound. In: 39th Annual Symposium on Foundations of Computer Science, pp. 166–173. IEEE Computer Society, Los Alamitos (1998)

    Google Scholar 

  16. Kalai, A.: Efficient pattern-matching with don’t cares. In: Eppstein, D. (ed.) 13th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 655–656. SIAM, Philadelpha (2002)

    Google Scholar 

  17. Kociumaka, T., Kubica, M., Radoszewski, J., Rytter, W., Waleń, T.: A linear time algorithm for seeds computation. In: Rabani, Y. (ed.) 23rd Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1095–1112. SIAM, Philadelpha (2012)

    Chapter  Google Scholar 

  18. Li, Y., Smyth, W.F.: Computing the cover array in linear time. Algorithmica 32(1), 95–106 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lokshtanov, D., Marx, D., Saurabh, S.: Lower bounds based on the Exponential Time Hypothesis. Bulletin of the EATCS 105, 41–72 (2011)

    MATH  MathSciNet  Google Scholar 

  20. Moore, D., Smyth, W.F.: Computing the covers of a string in linear time. In: Sleator, D.D. (ed.) 5th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 511–515. SIAM, Philadelpha (1994)

    Google Scholar 

  21. Muthukrishnan, S., Palem, K.V.: Non-standard stringology: algorithms and complexity. In: 26th Annual ACM Symposium on Theory of Computing, pp. 770–779. ACM, New York (1994)

    Google Scholar 

  22. Smyth, W.F., Wang, S.: An adaptive hybrid pattern-matching algorithm on indeterminate strings. International Journal of Foundations of Computer Science 20(6), 985–1004 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Kociumaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Crochemore, M., Iliopoulos, C.S., Kociumaka, T., Radoszewski, J., Rytter, W., Waleń, T. (2014). Covering Problems for Partial Words and for Indeterminate Strings. In: Ahn, HK., Shin, CS. (eds) Algorithms and Computation. ISAAC 2014. Lecture Notes in Computer Science(), vol 8889. Springer, Cham. https://doi.org/10.1007/978-3-319-13075-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13075-0_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13074-3

  • Online ISBN: 978-3-319-13075-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics