Abstract
Estimation of demographic information from video sequence with people is a topic of growing interest in the last years. Indeed automatic estimation of audience statistics in digital signage as well as the human interaction in social robotic environment needs of increasingly robust algorithm for gender, race and age classification. In the present paper some of the state of the art features descriptors and sub space reduction approaches for gender, race and age group classification in video/image input are analyzed. Moreover a wide discussion about the influence of dataset distribution, balancing and cardinality is shown. The aim of our work is to investigate the best solution for each classification problem both in terms of estimation approach and dataset training. Additionally the computational problem it considered and discussed in order to contextualize the topic in a practical environment.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Morph-noncommercial face dataset. http://www.faceaginggroup.com/morph/
Bekios-Calfa, J., Buenaposada, J.M., Baumela, L.: Robust gender recognition by exploiting facial attributes dependencies. Pattern Recogn. Lett. 36(0), 228–234 (2014). http://www.sciencedirect.com/science/article/pii/S0167865513001864
Belhumeur, P., Hespanha, J., Kriegman, D.: Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997)
Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory. COLT ’92, pp. 144–152. ACM, New York (1992). http://doi.acm.org/10.1145/130385.130401
Brunelli, R., Poggio, T.: HyberBF networks for gender classification (1995)
Castrillón, M., Déniz, O., Guerra, C., Hernández, M.: ENCARA2: real-time detection of multiple faces at different resolutions in video streams. J. Vis. Commun. Image Represent. 18(2), 130–140 (2007)
Castrillón-Santana, M., Lorenzo-Navarro, J., Ramón-Balmaseda, E.: Improving gender classification accuracy in the wild. In: Ruiz-Shulcloper, J., Sanniti di Baja, G. (eds.) CIARP 2013, Part II. LNCS, vol. 8259, pp. 270–277. Springer, Heidelberg (2013). http://dx.doi.org/10.1007/978-3-642-41827-3_34
Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011). http://www.csie.ntu.edu.tw/~cjlin/libsvm
Chen, J., Shan, S., He, C., Zhao, G., Pietikäinen, M., Chen, X., Gao, W.: WLD: a robust local image descriptor. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1705–1720 (2010)
Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995). http://dx.doi.org/10.1023/A%3A1022627411411
Dago-Casas, P., Gonzalez-Jimenez, D., Yu, L.L., Alba-Castro, J.: Single- and cross-database benchmarks for gender classification under unconstrained settings. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 2152–2159, Nov 2011
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005, vol. 1, pp. 886–893, June 2005
Davies, N., Langheinrich, M., Jose, R., Schmidt, A.: Open display networks: a communications medium for the 21st century. Computer 45(5), 58–64 (2012)
Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)
Abdi, H., Valentin, D., Edelman, B., O’Toole, A.J.: More about the difference between men and women: evidence from linear neural networks and the principal-component approach. Neural Comput. 7(6), 1160–1164 (1995)
Hadid, A., Pietikäinen, M.: Demographic classification from face videos using manifold learning. Neurocomputing 100(0), 197–205 (2013). http://www.sciencedirect.com/science/article/pii/S0925231212003906, Special issue: Behaviours in video
Hsu, C.W., Chang, C.C., Lin, C.J., et al.: A practical guide to support vector classification (2003)
Hsu, C.W., Lin, C.J.: A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw. 13(2), 415–425 (2002)
Klare, B., Burge, M., Klontz, J., Vorder Bruegge, R., Jain, A.: Face recognition performance: role of demographic information. IEEE Trans. Inf. Forens. Secur. 7(6), 1789–1801 (2012)
Knerr, S., Personnaz, L., Dreyfus, G.: Single-layer learning revisited: a stepwise procedure for building and training a neural network. In: Soulié, F., Hérault, J. (eds.) Neurocomputing. NATO ASI Series, vol. 68, pp. 41–50. Springer, Heidelberg (1990). http://dx.doi.org/10.1007/978-3-642-76153-9_5
Krumm, J.: Ubiquitous advertising: the killer application for the 21st century. IEEE Perv. Comput. 10(1), 66–73 (2011)
Liu, L., Liu, J., Cheng, J.: Age-group classification of facial images. In: 2012 11th International Conference on Machine Learning and Applications (ICMLA), vol. 1, pp. 693–696, Dec 2012
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)
Lu, X., Jain, A.K.: Ethnicity identification from face images. In: Proceedings of the SPIE Defense and Security Symposium, Orlando, FL, pp. 165–170, Apr 2004
Lyons, M.J., Budynek, J., Plante, A., Akamatsu, S.: Classifying facial attributes using a 2-d Gabor wavelet representation and discriminant analysis. In: Proceedings of the Fourth IEEE International Conference on Automatic Face and Gesture Recognition, 2000, pp. 202–207 (2000)
Michelis, D., Müller, J.: The audience funnel: observations of gesture based interaction with multiple large displays in a city center. Int. J. Hum. Comput. Inter. 27(6), 562–579 (2011)
Mäkinen, E., Raisamo, R.: An experimental comparison of gender classification methods. Pattern Recogn. Lett. 29(10), 1544–1556 (2008). http://www.sciencedirect.com/science/article/pii/S0167865508001116
Müller, J., Wilmsmann, D., Exeler, J., Buzeck, M., Schmidt, A., Jay, T., Krüger, A.: Display blindness: the effect of expectations on attention towards digital signage. In: Tokuda, H., Beigl, M., Friday, A., Brush, A.J.B., Tobe, Y. (eds.) Pervasive 2009. LNCS, vol. 5538, pp. 1–8. Springer, Heidelberg (2009)
Müller, J., Walter, R., Bailly, G., Nischt, M., Alt, F.: Looking glass: a field study on noticing interactivity of a shop window. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. CHI ’12, pp. 297–306. ACM, New York (2012). http://doi.acm.org/10.1145/2207676.2207718
Phillips, P., Moon, H., Rizvi, S., Rauss, P.: The FERET evaluation methodology for face-recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1090–1104 (2000)
Robins, B., Dautenhahn, K.: Tactile interactions with a humanoid robot: novel play scenario implementations with children with autism. Int. J. Soc. Robot. 6(3), 397–415 (2014)
Saatci, Y., Town, C.: Cascaded classification of gender and facial expression using active appearance models. In: 7th International Conference on Automatic Face and Gesture Recognition, 2006. FGR 2006, pp. 393–398, Apr 2006
Sakarkaya, M., Yanbol, F., Kurt, Z.: Comparison of several classification algorithms for gender recognition from face images. In: 2012 IEEE 16th International Conference on Intelligent Engineering Systems (INES), pp. 97–101, June 2012
Shan, C.: Learning local binary patterns for gender classification on real-world face images. Pattern Recogn. Lett. 33(4), 431–437 (2012). http://www.sciencedirect.com/science/article/pii/S0167865511001607, Intelligent Multimedia Interactivity
Smarr, C.A., Mitzner, T., Beer, J., Prakash, A., Chen, T., Kemp, C., Rogers, W.: Domestic robots for older adults: attitudes, preferences, and potential. Int. J. Soc. Robot. 6(2), 229–247 (2014)
Sun, N., Zheng, W., Sun, C., Zou, C., Zhao, L.: Gender classification based on boosting local binary pattern. In: Wang, J., Yi, Z., Żurada, J.M., Lu, B.-L., Yin, H. (eds.) ISNN 2006. LNCS, vol. 3972, pp. 194–201. Springer, Heidelberg (2006)
Sun, Z., Bebis, G., Yuan, X., Louis, S.J.: Genetic feature subset selection for gender classification: a comparison study. In: IEEE Workshop on Applications of Computer Vision, pp. 165–170 (2002)
Tapia, J., Perez, C.: Gender classification based on fusion of different spatial scale features selected by mutual information from histogram of LBP, intensity, and shape. IEEE Trans. Inf. Forens. Secur. 8(3), 488–499 (2013)
Toderici, G., O’Malley, S., Passalis, G., Theoharis, T., Kakadiaris, I.: Ethnicity- and gender-based subject retrieval using 3-d face-recognition techniques. Int. J. Comput. Vis. 89(2–3), 382–391 (2010)
Ullah, I., Hussain, M., Muhammad, G., Aboalsamh, H., Bebis, G., Mirza, A.: Gender recognition from face images with local WLD descriptor. In: 2012 19th International Conference on Systems, Signals and Image Processing (IWSSIP), pp. 417–420, Apr 2012
Viola, P., Jones, M.: Robust real-time face detection. Int. J. Comput. Vis. 57(2), 137–154 (2004)
Ylioinas, J., Hadid, A., Pietikäinen, M.: Age classification in unconstrained conditions using LBP variants. In: 2012 21st International Conference on Pattern Recognition (ICPR), pp. 1257–1260, Nov 2012
Ylioinas, J., Hadid, A., Hong, X., Pietikäinen, M.: Age estimation using local binary pattern kernel density estimate. In: Petrosino, A. (ed.) ICIAP 2013, Part I. LNCS, vol. 8156, pp. 141–150. Springer, Heidelberg (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Carcagnì, P., Del Coco, M., Mazzeo, P.L., Testa, A., Distante, C. (2014). Features Descriptors for Demographic Estimation: A Comparative Study. In: Distante, C., Battiato, S., Cavallaro, A. (eds) Video Analytics for Audience Measurement. VAAM 2014. Lecture Notes in Computer Science(), vol 8811. Springer, Cham. https://doi.org/10.1007/978-3-319-12811-5_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-12811-5_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-12810-8
Online ISBN: 978-3-319-12811-5
eBook Packages: Computer ScienceComputer Science (R0)