[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Features Descriptors for Demographic Estimation: A Comparative Study

  • Conference paper
  • First Online:
Video Analytics for Audience Measurement (VAAM 2014)

Abstract

Estimation of demographic information from video sequence with people is a topic of growing interest in the last years. Indeed automatic estimation of audience statistics in digital signage as well as the human interaction in social robotic environment needs of increasingly robust algorithm for gender, race and age classification. In the present paper some of the state of the art features descriptors and sub space reduction approaches for gender, race and age group classification in video/image input are analyzed. Moreover a wide discussion about the influence of dataset distribution, balancing and cardinality is shown. The aim of our work is to investigate the best solution for each classification problem both in terms of estimation approach and dataset training. Additionally the computational problem it considered and discussed in order to contextualize the topic in a practical environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 27.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 34.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    www.bytefish.de/blog/local_binary_patterns/

  2. 2.

    www.vlfeat.org

References

  1. Morph-noncommercial face dataset. http://www.faceaginggroup.com/morph/

  2. Bekios-Calfa, J., Buenaposada, J.M., Baumela, L.: Robust gender recognition by exploiting facial attributes dependencies. Pattern Recogn. Lett. 36(0), 228–234 (2014). http://www.sciencedirect.com/science/article/pii/S0167865513001864

    Article  Google Scholar 

  3. Belhumeur, P., Hespanha, J., Kriegman, D.: Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997)

    Article  Google Scholar 

  4. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory. COLT ’92, pp. 144–152. ACM, New York (1992). http://doi.acm.org/10.1145/130385.130401

  5. Brunelli, R., Poggio, T.: HyberBF networks for gender classification (1995)

    Google Scholar 

  6. Castrillón, M., Déniz, O., Guerra, C., Hernández, M.: ENCARA2: real-time detection of multiple faces at different resolutions in video streams. J. Vis. Commun. Image Represent. 18(2), 130–140 (2007)

    Article  Google Scholar 

  7. Castrillón-Santana, M., Lorenzo-Navarro, J., Ramón-Balmaseda, E.: Improving gender classification accuracy in the wild. In: Ruiz-Shulcloper, J., Sanniti di Baja, G. (eds.) CIARP 2013, Part II. LNCS, vol. 8259, pp. 270–277. Springer, Heidelberg (2013). http://dx.doi.org/10.1007/978-3-642-41827-3_34

    Chapter  Google Scholar 

  8. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011). http://www.csie.ntu.edu.tw/~cjlin/libsvm

  9. Chen, J., Shan, S., He, C., Zhao, G., Pietikäinen, M., Chen, X., Gao, W.: WLD: a robust local image descriptor. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1705–1720 (2010)

    Article  Google Scholar 

  10. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995). http://dx.doi.org/10.1023/A%3A1022627411411

  11. Dago-Casas, P., Gonzalez-Jimenez, D., Yu, L.L., Alba-Castro, J.: Single- and cross-database benchmarks for gender classification under unconstrained settings. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 2152–2159, Nov 2011

    Google Scholar 

  12. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005, vol. 1, pp. 886–893, June 2005

    Google Scholar 

  13. Davies, N., Langheinrich, M., Jose, R., Schmidt, A.: Open display networks: a communications medium for the 21st century. Computer 45(5), 58–64 (2012)

    Article  Google Scholar 

  14. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Abdi, H., Valentin, D., Edelman, B., O’Toole, A.J.: More about the difference between men and women: evidence from linear neural networks and the principal-component approach. Neural Comput. 7(6), 1160–1164 (1995)

    Article  Google Scholar 

  16. Hadid, A., Pietikäinen, M.: Demographic classification from face videos using manifold learning. Neurocomputing 100(0), 197–205 (2013). http://www.sciencedirect.com/science/article/pii/S0925231212003906, Special issue: Behaviours in video

  17. Hsu, C.W., Chang, C.C., Lin, C.J., et al.: A practical guide to support vector classification (2003)

    Google Scholar 

  18. Hsu, C.W., Lin, C.J.: A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw. 13(2), 415–425 (2002)

    Article  Google Scholar 

  19. Klare, B., Burge, M., Klontz, J., Vorder Bruegge, R., Jain, A.: Face recognition performance: role of demographic information. IEEE Trans. Inf. Forens. Secur. 7(6), 1789–1801 (2012)

    Article  Google Scholar 

  20. Knerr, S., Personnaz, L., Dreyfus, G.: Single-layer learning revisited: a stepwise procedure for building and training a neural network. In: Soulié, F., Hérault, J. (eds.) Neurocomputing. NATO ASI Series, vol. 68, pp. 41–50. Springer, Heidelberg (1990). http://dx.doi.org/10.1007/978-3-642-76153-9_5

    Chapter  Google Scholar 

  21. Krumm, J.: Ubiquitous advertising: the killer application for the 21st century. IEEE Perv. Comput. 10(1), 66–73 (2011)

    Article  Google Scholar 

  22. Liu, L., Liu, J., Cheng, J.: Age-group classification of facial images. In: 2012 11th International Conference on Machine Learning and Applications (ICMLA), vol. 1, pp. 693–696, Dec 2012

    Google Scholar 

  23. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  24. Lu, X., Jain, A.K.: Ethnicity identification from face images. In: Proceedings of the SPIE Defense and Security Symposium, Orlando, FL, pp. 165–170, Apr 2004

    Google Scholar 

  25. Lyons, M.J., Budynek, J., Plante, A., Akamatsu, S.: Classifying facial attributes using a 2-d Gabor wavelet representation and discriminant analysis. In: Proceedings of the Fourth IEEE International Conference on Automatic Face and Gesture Recognition, 2000, pp. 202–207 (2000)

    Google Scholar 

  26. Michelis, D., Müller, J.: The audience funnel: observations of gesture based interaction with multiple large displays in a city center. Int. J. Hum. Comput. Inter. 27(6), 562–579 (2011)

    Article  Google Scholar 

  27. Mäkinen, E., Raisamo, R.: An experimental comparison of gender classification methods. Pattern Recogn. Lett. 29(10), 1544–1556 (2008). http://www.sciencedirect.com/science/article/pii/S0167865508001116

    Article  Google Scholar 

  28. Müller, J., Wilmsmann, D., Exeler, J., Buzeck, M., Schmidt, A., Jay, T., Krüger, A.: Display blindness: the effect of expectations on attention towards digital signage. In: Tokuda, H., Beigl, M., Friday, A., Brush, A.J.B., Tobe, Y. (eds.) Pervasive 2009. LNCS, vol. 5538, pp. 1–8. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  29. Müller, J., Walter, R., Bailly, G., Nischt, M., Alt, F.: Looking glass: a field study on noticing interactivity of a shop window. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. CHI ’12, pp. 297–306. ACM, New York (2012). http://doi.acm.org/10.1145/2207676.2207718

  30. Phillips, P., Moon, H., Rizvi, S., Rauss, P.: The FERET evaluation methodology for face-recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1090–1104 (2000)

    Article  Google Scholar 

  31. Robins, B., Dautenhahn, K.: Tactile interactions with a humanoid robot: novel play scenario implementations with children with autism. Int. J. Soc. Robot. 6(3), 397–415 (2014)

    Article  Google Scholar 

  32. Saatci, Y., Town, C.: Cascaded classification of gender and facial expression using active appearance models. In: 7th International Conference on Automatic Face and Gesture Recognition, 2006. FGR 2006, pp. 393–398, Apr 2006

    Google Scholar 

  33. Sakarkaya, M., Yanbol, F., Kurt, Z.: Comparison of several classification algorithms for gender recognition from face images. In: 2012 IEEE 16th International Conference on Intelligent Engineering Systems (INES), pp. 97–101, June 2012

    Google Scholar 

  34. Shan, C.: Learning local binary patterns for gender classification on real-world face images. Pattern Recogn. Lett. 33(4), 431–437 (2012). http://www.sciencedirect.com/science/article/pii/S0167865511001607, Intelligent Multimedia Interactivity

  35. Smarr, C.A., Mitzner, T., Beer, J., Prakash, A., Chen, T., Kemp, C., Rogers, W.: Domestic robots for older adults: attitudes, preferences, and potential. Int. J. Soc. Robot. 6(2), 229–247 (2014)

    Article  Google Scholar 

  36. Sun, N., Zheng, W., Sun, C., Zou, C., Zhao, L.: Gender classification based on boosting local binary pattern. In: Wang, J., Yi, Z., Żurada, J.M., Lu, B.-L., Yin, H. (eds.) ISNN 2006. LNCS, vol. 3972, pp. 194–201. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  37. Sun, Z., Bebis, G., Yuan, X., Louis, S.J.: Genetic feature subset selection for gender classification: a comparison study. In: IEEE Workshop on Applications of Computer Vision, pp. 165–170 (2002)

    Google Scholar 

  38. Tapia, J., Perez, C.: Gender classification based on fusion of different spatial scale features selected by mutual information from histogram of LBP, intensity, and shape. IEEE Trans. Inf. Forens. Secur. 8(3), 488–499 (2013)

    Article  Google Scholar 

  39. Toderici, G., O’Malley, S., Passalis, G., Theoharis, T., Kakadiaris, I.: Ethnicity- and gender-based subject retrieval using 3-d face-recognition techniques. Int. J. Comput. Vis. 89(2–3), 382–391 (2010)

    Article  Google Scholar 

  40. Ullah, I., Hussain, M., Muhammad, G., Aboalsamh, H., Bebis, G., Mirza, A.: Gender recognition from face images with local WLD descriptor. In: 2012 19th International Conference on Systems, Signals and Image Processing (IWSSIP), pp. 417–420, Apr 2012

    Google Scholar 

  41. Viola, P., Jones, M.: Robust real-time face detection. Int. J. Comput. Vis. 57(2), 137–154 (2004)

    Article  Google Scholar 

  42. Ylioinas, J., Hadid, A., Pietikäinen, M.: Age classification in unconstrained conditions using LBP variants. In: 2012 21st International Conference on Pattern Recognition (ICPR), pp. 1257–1260, Nov 2012

    Google Scholar 

  43. Ylioinas, J., Hadid, A., Hong, X., Pietikäinen, M.: Age estimation using local binary pattern kernel density estimate. In: Petrosino, A. (ed.) ICIAP 2013, Part I. LNCS, vol. 8156, pp. 141–150. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Del Coco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Carcagnì, P., Del Coco, M., Mazzeo, P.L., Testa, A., Distante, C. (2014). Features Descriptors for Demographic Estimation: A Comparative Study. In: Distante, C., Battiato, S., Cavallaro, A. (eds) Video Analytics for Audience Measurement. VAAM 2014. Lecture Notes in Computer Science(), vol 8811. Springer, Cham. https://doi.org/10.1007/978-3-319-12811-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12811-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12810-8

  • Online ISBN: 978-3-319-12811-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics