Abstract
We investigate the relationship between consensus measures used in different settings depending on how voters or experts express their preferences. We propose some new models for single-preference voting, which we derive from the evenness concept in ecology, and show that some of these can be placed within the framework of existing consensus measures using the discrete distance. Finally, we suggest some generalizations of the single-preference consensus measures allowing the incorporation of more general notions of distance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alonso, S., Pérez, I.J., Cabrerizo, F.J., Herrera-Viedma, E.: A linguistic consensus model for web 2.0 communities. Applied Soft Computing 13(1), 149–157 (2013)
Beliakov, G., Calvo, T., James, S.: Consensus measures constructed from aggregation functions and fuzzy implications. Knowledge-Based Systems 55, 1–8 (2014)
Beliakov, G., James, S., Calvo, T.: Aggregating fuzzy implications to measure group consensus. In: Proc. Joint IFSA World Congress and NAFIPS Annual Meeting, Edmonton, Canada, pp. 1016–1021 (2013)
Beliakov, G., James, S., Nimmo, D.: Can indices of ecological evenness be used to measure consensus? In: Proc. of FUZZIEEE, Beijing, China (2014)
Bosch, R.: Characterizations of Voting Rules and Consensus Measures, Ph.D. Thesis. Universiteit van Tilburg (2006)
Bulla, L.: An index of evenness and its associated diversity measure. Oikos 70, 167–171 (1994)
Cabrerizo, F., Moreno, J., Pérez, I., Herrera-Viedma, E.: Analyzing consensus approaches in fuzzy group decision making: advantages and drawbacks. Soft Computing 14, 451–463 (2010)
Cabrerizo, F.J., Alonso, S., Pérez, I.J., Herrera-Viedma, E.: On consensus measures in fuzzy group decision making. In: Torra, V., Narukawa, Y. (eds.) MDAI 2008. LNCS (LNAI), vol. 5285, pp. 86–97. Springer, Heidelberg (2008)
Cabrerizo, F.J., Chiclana, F., Uren̈a, M.R., Herrera-Videma, E.: Challenges and open questions in soft consensus models. In: Proc. Joint IFSA World Congress and NAFIPS Annual Meeting, Edmonton, Canada, pp. 944–949 (2013)
Chiclana, F., Tapia García, J.M., del Moral, M.J., Herrera-Viedma, E.: A statistical comparative study of different similarity measures of consensus in group decision making. Information Sciences 221, 110–123 (2013)
Dalton, H.: The measurement of the inequality of incomes. The Economic Journal 30, 348–361 (1920)
García-Lapresta, J.L., Pérez-Román, D.: Consensus measures generated by weighted Kemeny distances on weak orders. In: Proceedings of ISDA, Cairo, Egypt, pp. 463–468 (2010)
García-Lapresta, J.L., Pérez-Román, D.: Measuring consensus in weak orders. In: Herrera-Viedma, E., García-Lapresta, J., Kacprzyk, J., Fedrizzi, M., Nurmi, H., Zadrożny, S. (eds.) Consensual Processes. STUDFUZZ, vol. 267, pp. 213–234. Springer, Heidelberg (2011)
García-Lapresta, J.L., Pérez-Román, D.: Consensus-based hierarchical agglomerative clustering in the context of weak orders. In: Proceedings of IFSA World Congress, Edmonton, Canada, pp. 1010–1015 (2013)
García-Lapresta, J.L., Román, D.P.: Some measures of consensus generated by distances on weak orders. In: Proceedings of XIV Congreso Español sobre Tecnologías y Lógica Fuzzy, Cuencas Mineras, September 17-19, pp. 477–483 (2008)
Heip, C.: A new index measuring evenness. Journal of Marine Biological Association of the United Kingdom 54(3), 555–557 (1974)
Heiser, W.J., D’Ambrosio, A.: Clustering and prediction of rankings within a Kemeny distance framework. In: Algorithms from and for Nature and Life, pp. 19–31. Springer International Publishing (2013)
Herrera-Viedma, E., Herrera, F., Chiclana, F.: A consensus model for multiperson decision making with different preference structures. IEEE Transactions on Systems, Man and Cybernetics – Part A: Systems and Humans 32, 394–402 (2002)
Krebs, C.J.: Ecological Methodology. Harper Collins, New York (1989)
Martín, J., Mayor, G.: Multi-argument distances. Fuzzy Sets and Systems 167, 92–100 (2011)
Pielou, E.C.: An Introduction to Mathematical Ecology. Wiley-Interscience, New York (1969)
Ricotta, C.: A recipe for unconventional evenness measures. Acta Biotheoretica 52, 95–104 (2004)
Shannon, C.E., Weaver, W.: The mathematical theory of communication. Univ. of Illinois Press, Urbana (1949)
Simpson, E.H.: Measurement of diversity. Nature 163, 688 (1949)
Smith, B., Wilson, J.B.: A consumer’s guide to evenness indices. Oikos 76, 70–82 (1996)
Szmidt, E., Kacprzyk, J.: Analysis of consensus under intuitionistic fuzzy preferences. In: Proc. Int. Conf. in Fuzzy Logic and Technology, Leicester, pp. 79–82, De Montfort University (2001)
Taillie, C.: Species equitibility: a comparative approach. In: Ecological Diversity in Theory and Practice, pp. 51–62. Int. Coop. Publ. House, Fairland (1979)
Tastle, W.J., Wierman, M.J., Dumdum, U.R.: Ranking ordinal scales using the consensus measure. Issues in Information Systems 185, 96–102 (2006)
Tuomisto, H.: An updated consumer’s guide to evenness and related indices. Oikos 121, 1203–1218 (2012)
Williams, C.B.: Patterns in the balance of nature. Academic Press, London (1964)
Xu, Z., Cai, X.: Group consensus algorithms based on preference relations. Information Sciences 181, 150–162 (2011)
Xu, Z., Cai, X.: On consensus of group decision making with interval utility values and interval preference orderings. Group Decision and Negotiation 22, 997–1019 (2013)
Yager, R.R.: On the specificity of a possibility distribution. Fuzzy Sets and Systems 50, 279–292 (1992)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Beliakov, G., James, S., Smith, L. (2014). Single-Preference Consensus Measures Based on Models of Ecological Evenness. In: Torra, V., Narukawa, Y., Endo, Y. (eds) Modeling Decisions for Artificial Intelligence. MDAI 2014. Lecture Notes in Computer Science(), vol 8825. Springer, Cham. https://doi.org/10.1007/978-3-319-12054-6_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-12054-6_5
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-12053-9
Online ISBN: 978-3-319-12054-6
eBook Packages: Computer ScienceComputer Science (R0)