Abstract
Recent work in cognitive psychology suggests that crowd perception may be based on pre-attentive ensemble coding mechanisms consistent with feedforward hierarchical models of visual processing. Here, we extend a biological model of motion processing with a new dictionary learning method tailored for crowd perception. Our approach uses a sparse coding model to learn crowd prototypes. Ensemble coding mechanisms are implemented via structural and local coherence constraints. We evaluate the proposed method on multiple crowd perception problems from collective or abnormal crowd detection to tracking individuals in crowded scenes. Experimental results on crowd datasets demonstrate competitive results on par or better than state-of-the-art approaches.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Physical Review E 51(5), 4282 (1995)
Ali, S., Shah, M.: A lagrangian particle dynamics approach for crowd flow segmentation and stability analysis. In: CVPR (2007)
Mehran, R., Oyama, A., Shah, M.: Abnormal crowd behavior detection using social force model. In: CVPR (2009)
Pellegrini, S., Ess, A., Schindler, K., Van Gool, L.J.: You’ll never walk alone: Modeling social behavior for multi-target tracking. In: ICCV (2009)
Kratz, L., Nishino, K.: Tracking with local spatio-temporal motion patterns in extremely crowded scenes. In: CVPR (2010)
Mahadevan, V., Li, W., Bhalodia, V., Vasconcelos, N.: Anomaly detection in crowded scenes. In: CVPR (2010)
Yamaguchi, K., Berg, A.C., Ortiz, L.E., Berg, T.L.: Who are you with and where are you going? In: CVPR (2011)
Cui, X., Liu, Q., Gao, M., Metaxas, D.: Abnormal detection using interaction energy potentials. In: CVPR (2011)
Mehran, R., Moore, B.E., Shah, M.: A streakline representation of flow in crowded scenes. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part III. LNCS, vol. 6313, pp. 439–452. Springer, Heidelberg (2010)
Kratz, L., Nishino, K.: Going with the flow: Pedestrian efficiency in crowded scenes. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part IV. LNCS, vol. 7575, pp. 558–572. Springer, Heidelberg (2012)
Zhou, B., Tang, X., Wang, X.: Measuring crowd collectiveness. In: CVPR (2013)
Wu, S., Moore, B.E., Shah, M.: Chaotic invariants of lagrangian particle trajectories for anomaly detection in crowded scenes. In: CVPR (2010)
Solmaz, B., Moore, B., Shah, M.: Identifying behaviors in crowd scenes using stability analysis for dynamical systems. IEEE TPAMI 34(10), 2064–2070 (2012)
Hospedales, T., Gong, S., Xiang, T.: Video behaviour mining using a dynamic topic model. International Journal of Computer Vision 98(3), 303–323 (2012)
Rodriguez, M., Ali, S., Kanade, T.: Tracking in unstructured crowded scenes. In: ICCV (2009)
Lin, D., Grimson, E., Fisher, J.: Learning visual flows: A lie algebraic approach. In: CVPR (2009)
Kim, J., Grauman, K.: Observe locally, infer globally: a space-time mrf for detecting abnormal activities with incremental updates. In: CVPR (2009)
Andrade, E., Blunsden, S., Fisher, R.: Hidden markov models for optical flow analysis in crowds. In: ICPR (2006)
Zhao, X., Gong, D., Medioni, G.: Tracking using motion patterns for very crowded scenes. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 315–328. Springer, Heidelberg (2012)
Zen, G., Ricci, E.: Earth mover’s prototypes: A convex learning approach for discovering activity patterns in dynamic scenes. In: CVPR (2011)
Cong, Y., Yuan, J., Liu, J.: Sparse reconstruction cost for abnormal event detection. In: CVPR (2011)
Lu, C., Shi, J., Jia, J.: Abnormal event detection at 150 fps in matlab. In: ICCV (2013)
Zhao, B., Fei-Fei, L., Xing, E.P.: Online detection of unusual events in videos via dynamic sparse coding. In: CVPR (2011)
Zen, G., Ricci, E., Sebe, N.: Exploiting sparse representations for robust analysis of noisy complex video scenes. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VI. LNCS, vol. 7577, pp. 199–213. Springer, Heidelberg (2012)
Sweeny, T.D., Haroz, S., Whitney, D.: Perceiving group behavior: Sensitive ensemble coding mechanisms for biological motion of human crowds. Journal of Experimental Psychology: Human Perception and Performance 39(2), 329 (2013)
Crouzet, S.M., Serre, T.: What are the visual features underlying rapid object recognition? Frontiers in Psychology 2 (2011)
Giese, M.A., Poggio, T.: Neural mechanisms for the recognition of biological movements. Nature Reviews Neuroscience 4(3), 179–192 (2003)
Jhuang, H., Serre, T., Wolf, L., Poggio, T.: A biologically inspired system for action recognition. In: ICCV (2007)
Taylor, G.W., Fergus, R., LeCun, Y., Bregler, C.: Convolutional learning of spatio-temporal features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp. 140–153. Springer, Heidelberg (2010)
Zhang, Y., Qin, L., Yao, H., Huang, Q.: Abnormal crowd behavior detection based on social attribute-aware force model. In: ICIP (2012)
Zhang, Y., Qin, L., Yao, H., Xu, P., Huang, Q.: Beyond particle flow: Bag of trajectory graphs for dense crowd event recognition. In: ICIP (2013)
Zheng, M., Bu, J., Chen, C., Wang, C., Zhang, L., Qiu, G., Cai, D.: Graph regularized sparse coding for image representation. IEEE TIP (2011)
Lee, H., Battle, A., Raina, R., Ng, A.: Efficient sparse coding algorithms. In: NIPS (2006)
Gao, S., Tsang, I.W., Chia, L.T., Zhao, P.: Local features are not lonely–laplacian sparse coding for image classification. In: CVPR (2010)
Zhang, K., Zhang, L., Yang, M.-H.: Real-time compressive tracking. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 864–877. Springer, Heidelberg (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Zhang, Y., Zhang, S., Huang, Q., Serre, T. (2014). Learning Sparse Prototypes for Crowd Perception via Ensemble Coding Mechanisms. In: Park, H.S., Salah, A.A., Lee, Y.J., Morency, LP., Sheikh, Y., Cucchiara, R. (eds) Human Behavior Understanding. HBU 2014. Lecture Notes in Computer Science, vol 8749. Springer, Cham. https://doi.org/10.1007/978-3-319-11839-0_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-11839-0_8
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-11838-3
Online ISBN: 978-3-319-11839-0
eBook Packages: Computer ScienceComputer Science (R0)