[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Learning Sparse Prototypes for Crowd Perception via Ensemble Coding Mechanisms

  • Conference paper
Human Behavior Understanding (HBU 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8749))

Included in the following conference series:

Abstract

Recent work in cognitive psychology suggests that crowd perception may be based on pre-attentive ensemble coding mechanisms consistent with feedforward hierarchical models of visual processing. Here, we extend a biological model of motion processing with a new dictionary learning method tailored for crowd perception. Our approach uses a sparse coding model to learn crowd prototypes. Ensemble coding mechanisms are implemented via structural and local coherence constraints. We evaluate the proposed method on multiple crowd perception problems from collective or abnormal crowd detection to tracking individuals in crowded scenes. Experimental results on crowd datasets demonstrate competitive results on par or better than state-of-the-art approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 27.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 34.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Physical Review E 51(5), 4282 (1995)

    Article  Google Scholar 

  2. Ali, S., Shah, M.: A lagrangian particle dynamics approach for crowd flow segmentation and stability analysis. In: CVPR (2007)

    Google Scholar 

  3. Mehran, R., Oyama, A., Shah, M.: Abnormal crowd behavior detection using social force model. In: CVPR (2009)

    Google Scholar 

  4. Pellegrini, S., Ess, A., Schindler, K., Van Gool, L.J.: You’ll never walk alone: Modeling social behavior for multi-target tracking. In: ICCV (2009)

    Google Scholar 

  5. Kratz, L., Nishino, K.: Tracking with local spatio-temporal motion patterns in extremely crowded scenes. In: CVPR (2010)

    Google Scholar 

  6. Mahadevan, V., Li, W., Bhalodia, V., Vasconcelos, N.: Anomaly detection in crowded scenes. In: CVPR (2010)

    Google Scholar 

  7. Yamaguchi, K., Berg, A.C., Ortiz, L.E., Berg, T.L.: Who are you with and where are you going? In: CVPR (2011)

    Google Scholar 

  8. Cui, X., Liu, Q., Gao, M., Metaxas, D.: Abnormal detection using interaction energy potentials. In: CVPR (2011)

    Google Scholar 

  9. Mehran, R., Moore, B.E., Shah, M.: A streakline representation of flow in crowded scenes. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part III. LNCS, vol. 6313, pp. 439–452. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Kratz, L., Nishino, K.: Going with the flow: Pedestrian efficiency in crowded scenes. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part IV. LNCS, vol. 7575, pp. 558–572. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Zhou, B., Tang, X., Wang, X.: Measuring crowd collectiveness. In: CVPR (2013)

    Google Scholar 

  12. Wu, S., Moore, B.E., Shah, M.: Chaotic invariants of lagrangian particle trajectories for anomaly detection in crowded scenes. In: CVPR (2010)

    Google Scholar 

  13. Solmaz, B., Moore, B., Shah, M.: Identifying behaviors in crowd scenes using stability analysis for dynamical systems. IEEE TPAMI 34(10), 2064–2070 (2012)

    Article  Google Scholar 

  14. Hospedales, T., Gong, S., Xiang, T.: Video behaviour mining using a dynamic topic model. International Journal of Computer Vision 98(3), 303–323 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  15. Rodriguez, M., Ali, S., Kanade, T.: Tracking in unstructured crowded scenes. In: ICCV (2009)

    Google Scholar 

  16. Lin, D., Grimson, E., Fisher, J.: Learning visual flows: A lie algebraic approach. In: CVPR (2009)

    Google Scholar 

  17. Kim, J., Grauman, K.: Observe locally, infer globally: a space-time mrf for detecting abnormal activities with incremental updates. In: CVPR (2009)

    Google Scholar 

  18. Andrade, E., Blunsden, S., Fisher, R.: Hidden markov models for optical flow analysis in crowds. In: ICPR (2006)

    Google Scholar 

  19. Zhao, X., Gong, D., Medioni, G.: Tracking using motion patterns for very crowded scenes. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 315–328. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  20. Zen, G., Ricci, E.: Earth mover’s prototypes: A convex learning approach for discovering activity patterns in dynamic scenes. In: CVPR (2011)

    Google Scholar 

  21. Cong, Y., Yuan, J., Liu, J.: Sparse reconstruction cost for abnormal event detection. In: CVPR (2011)

    Google Scholar 

  22. Lu, C., Shi, J., Jia, J.: Abnormal event detection at 150 fps in matlab. In: ICCV (2013)

    Google Scholar 

  23. Zhao, B., Fei-Fei, L., Xing, E.P.: Online detection of unusual events in videos via dynamic sparse coding. In: CVPR (2011)

    Google Scholar 

  24. Zen, G., Ricci, E., Sebe, N.: Exploiting sparse representations for robust analysis of noisy complex video scenes. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VI. LNCS, vol. 7577, pp. 199–213. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  25. Sweeny, T.D., Haroz, S., Whitney, D.: Perceiving group behavior: Sensitive ensemble coding mechanisms for biological motion of human crowds. Journal of Experimental Psychology: Human Perception and Performance 39(2), 329 (2013)

    Google Scholar 

  26. Crouzet, S.M., Serre, T.: What are the visual features underlying rapid object recognition? Frontiers in Psychology 2 (2011)

    Google Scholar 

  27. Giese, M.A., Poggio, T.: Neural mechanisms for the recognition of biological movements. Nature Reviews Neuroscience 4(3), 179–192 (2003)

    Article  Google Scholar 

  28. Jhuang, H., Serre, T., Wolf, L., Poggio, T.: A biologically inspired system for action recognition. In: ICCV (2007)

    Google Scholar 

  29. Taylor, G.W., Fergus, R., LeCun, Y., Bregler, C.: Convolutional learning of spatio-temporal features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp. 140–153. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  30. Zhang, Y., Qin, L., Yao, H., Huang, Q.: Abnormal crowd behavior detection based on social attribute-aware force model. In: ICIP (2012)

    Google Scholar 

  31. Zhang, Y., Qin, L., Yao, H., Xu, P., Huang, Q.: Beyond particle flow: Bag of trajectory graphs for dense crowd event recognition. In: ICIP (2013)

    Google Scholar 

  32. Zheng, M., Bu, J., Chen, C., Wang, C., Zhang, L., Qiu, G., Cai, D.: Graph regularized sparse coding for image representation. IEEE TIP (2011)

    Google Scholar 

  33. Lee, H., Battle, A., Raina, R., Ng, A.: Efficient sparse coding algorithms. In: NIPS (2006)

    Google Scholar 

  34. Gao, S., Tsang, I.W., Chia, L.T., Zhao, P.: Local features are not lonely–laplacian sparse coding for image classification. In: CVPR (2010)

    Google Scholar 

  35. Zhang, K., Zhang, L., Yang, M.-H.: Real-time compressive tracking. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 864–877. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhang, Y., Zhang, S., Huang, Q., Serre, T. (2014). Learning Sparse Prototypes for Crowd Perception via Ensemble Coding Mechanisms. In: Park, H.S., Salah, A.A., Lee, Y.J., Morency, LP., Sheikh, Y., Cucchiara, R. (eds) Human Behavior Understanding. HBU 2014. Lecture Notes in Computer Science, vol 8749. Springer, Cham. https://doi.org/10.1007/978-3-319-11839-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11839-0_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11838-3

  • Online ISBN: 978-3-319-11839-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics