Abstract
In this paper, we investigate the second order statistics of essential matrix elements. Using the Taylor expansion for a rotation matrix up to second order terms and considering relatively high uncertainties for the rotation angles and translation parameters, a covariance matrix is obtained which includes the second order statistics of essential matrix elements. The covariance matrix is utilized along with the coplanarity equations and acts as a regularization term. Using the regularization term brings considerable improvements in the recovery of camera motion which will be proven based on simulation and different real image sequences.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Relative Monocular Camera Pose Estimation (RMCPE). http://www.cvlibs.net/datasets/kitti/eval_odometry.php
Bouguet, J.Y.: Pyramidal implementation of the Lucas Kanade feature tracker description of the algorithm (2000). http://robots.stanford.edu/cs223b04/algo_tracking.pdf
Dellaert, F., Kaess, M.: Square root SAM: simultaneous localization and mapping via square root information smoothing. Int. J. Rob. Res. 25(12), 1181–1203 (2006)
Faugeras, O.: Three-Dimensional Computer Vision: A Geometric Viewpoint. MIT Press, Cambridge (1993)
Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)
Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti vision benchmark suite. In: Conference on Computer Vision and Pattern Recognition (2012)
Geiger, A., Ziegler, J., Stiller, C.: StereoScan: dense 3D reconstruction in real-time. In: Intelligent Vehicles Symposium, pp. 963–968 (2011)
Hartley, R.I.: Estimation of relative camera positions for uncalibrated cameras. In: Sandini, G. (ed.) ECCV 1992. LNCS, vol. 588, pp. 579–587. Springer, Heidelberg (1992)
Hartley, R.I.: In defense of the eight-point algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 19(6), 580–593 (1997)
Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2004). ISBN: 0521540518
Li, H., Hartley, R.I.: Five-point motion estimation made easy. In: 18th International Conference on Pattern Recognition, pp. 630–633 (2006)
Longuet-Higgins, H.C.: A computer algorithm for reconstructing a scene from two projections. Nature 293, 133–135 (1981)
Luong, Q., Deriche, R., Faugeras, O., Papadopoulo, T.: On determining the fundamental matrix: analysis of different methods and experimental results. Technical report 1894, INRIA (1993)
Mirabdollah, M.H., Mertsching, B.: Single camera motion estimation: modification of the 8-point method. In: Lee, J., Lee, M.C., Liu, H., Ryu, J.-H. (eds.) ICIRA 2013, Part I. LNCS, vol. 8102, pp. 117–128. Springer, Heidelberg (2013)
Nistér, D.: An efficient solution to the five-point relative pose problem. IEEE Trans. Pattern Anal. Mach. Intell. 26(6), 756–777 (2004)
Strasdat, H., Montiel, J.M.M., Davison, A.J.: Scale drift-aware large scale monocular SLAM. In: Proceedings of Robotics: Science and Systems (2010)
Tsai, R.Y., Huang, T.S.: Uniqueness and estimation of three-dimensional motion parameters of rigid objects with curved surfaces. IEEE Trans. Pattern Anal. Mach. Intell 6(1), 13–27 (1984)
Yamaguchi, K., McAllester, D., Urtasun, R.: Robust monocular epipolar flow estimation. In: CVPR, pp. 1862–1869 (2013)
Zhao, L., Huang, S., Yan, L., Dissanayake, G.: Parallax angle parametrization for monocular SLAM. In: IEEE International Conference on Robotics and Automation, pp. 3117–3124 (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Mirabdollah, M.H., Mertsching, B. (2014). On the Second Order Statistics of Essential Matrix Elements. In: Jiang, X., Hornegger, J., Koch, R. (eds) Pattern Recognition. GCPR 2014. Lecture Notes in Computer Science(), vol 8753. Springer, Cham. https://doi.org/10.1007/978-3-319-11752-2_45
Download citation
DOI: https://doi.org/10.1007/978-3-319-11752-2_45
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-11751-5
Online ISBN: 978-3-319-11752-2
eBook Packages: Computer ScienceComputer Science (R0)