Abstract
In graph databases, a given graph query can be executed in a large variety of semantically equivalent ways. Each such execution plan produces the same results, but at different computation costs. The query planning problem consists of finding, for a given query, an execution plan with the minimum cost. The traditional greedy or heuristic cost-based approaches addressing the query planning problem do not guarantee by design the optimality of the chosen execution plan. In this paper, we present a principled framework to solve the query planning problem by casting it into an Integer Linear Programming problem, and discuss its applications to testing and improving heuristic-based query planners.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bornea, M., Dolby, J., Fokoue, A., Kementsietsidis, A., Srinivas, K.: An offline optimal sparql query planning approach, http://researcher.watson.ibm.com/researcher/files/us-achille/techreport.pdf
Bornea, M., Dolby, J., Kementsietsidis, A., Srinivas, K., Dantressangle, P., Udrea, O., Bishwaranjan, B.: Building an efficient rdf store over a relational database. In: Proceedings of the ACM SIGMOD Conference, SIGMOD 2013 (2013)
Chaudhuri, S.: An overview of query optimization in relational systems. In: SIGACT-SIGMOD-SIGART, pp. 34–43 (1998)
Graefe, G.: The cascades framework for query optimization. Data Engineering Bulletin 18 (1995)
Graefe, G., DeWitt, D.J.: The exodus optimizer generator. SIGMOD Record, 160–172 (1987)
Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base systems. Journal of Web Semantics 3(2-3), 158–182 (2005)
Haas, L.M., Freytag, J.C., Lohman, G.M., Pirahesh, H.: Extensible query processing in starburst. SIGMOD Record, 377–388 (1989)
Hartig, O., Heese, R.: The SPARQL query graph model for query optimization. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 564–578. Springer, Heidelberg (2007)
Ibaraki, T., Kameda, T.: On the optimal nesting order for computing n-relational joins. ACM Trans. Database Syst. 9(3), 482–502 (1984), http://doi.acm.org/10.1145/1270.1498
Ioannidis, Y.E.: Query optimization. In: The Computer Science and Engineering Handbook, pp. 1038–1057 (1997)
Jarke, M., Koch, J.: Query optimization in database systems. ACM Comput. Surv., 111–152 (1984)
Ma, L., Yang, Y., Qiu, Z., Xie, G., Pan, Y., Liu, S.: Towards a complete owl ontology benchmark. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 125–139. Springer, Heidelberg (2006), http://dx.doi.org/10.1007/11762256_12
Maduko, A., Anyanwu, K., Sheth, A., Schliekelman, P.: Estimating the cardinality of rdf graph patterns. In: WWW, pp. 1233–1234 (2007)
Morsey, M., Lehmann, J., Auer, S., Ngonga Ngomo, A.-C.: DBpedia SPARQL Benchmark – Performance Assessment with Real Queries on Real Data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 454–469. Springer, Heidelberg (2011)
Muralikrishna, M., DeWitt, D.J.: Equi-depth histograms for estimating selectivity factors for multi-dimensional queries. In: SIGMOD, pp. 28–36 (1988)
Neumann, T., Weikum, G.: The RDF-3X engine for scalable management of RDF data. The VLDB Journal 19(1), 91–113 (2010)
Poosala, V., Ioannidis, Y.E., Haas, P.J., Shekita, E.J.: Improved histograms for selectivity estimation of range predicates. In: SIGMOD, pp. 294–305 (1996)
Schmidt, M., Hornung, T., Lausen, G., Pinkel, C.: SP2Bench: A SPARQL Performance Benchmark. CoRR abs/0806.4627 (2008)
Selinger, P.G., Astrahan, M.M., Chamberlin, D.D., Lorie, R.A., Price, T.G.: Access path selection in a relational database management system. In: SIGMOD (1979)
Stocker, M., Seaborne, A., Bernstein, A., Kiefer, C., Reynolds, D.: SPARQL basic graph pattern optimization using selectivity estimation. In: WWW (2008)
Tsialiamanis, P., Sidirourgos, L., Fundulaki, I., Christophides, V., Boncz, P.: Heuristics-based query optimisation for SPARQL. In: EDBT, pp. 324–335 (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Fokoue, A., Bornea, M., Dolby, J., Kementsietsidis, A., Srinivas, K. (2014). An Offline Optimal SPARQL Query Planning Approach to Evaluate Online Heuristic Planners. In: Benatallah, B., Bestavros, A., Manolopoulos, Y., Vakali, A., Zhang, Y. (eds) Web Information Systems Engineering – WISE 2014. WISE 2014. Lecture Notes in Computer Science, vol 8786. Springer, Cham. https://doi.org/10.1007/978-3-319-11749-2_36
Download citation
DOI: https://doi.org/10.1007/978-3-319-11749-2_36
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-11748-5
Online ISBN: 978-3-319-11749-2
eBook Packages: Computer ScienceComputer Science (R0)